1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-12-16 13:10:35 +00:00
gnss-sdr/tests/unit-tests/arithmetic/complex_carrier_test.cc

191 lines
6.3 KiB
C++

/*!
* \file complex_carrier_test.cc
* \brief This file implements tests for the generation of complex exponentials.
* \author Carles Fernandez-Prades, 2014. cfernandez(at)cttc.es
*
*
* -----------------------------------------------------------------------------
*
* GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
* This file is part of GNSS-SDR.
*
* Copyright (C) 2010-2020 (see AUTHORS file for a list of contributors)
* SPDX-License-Identifier: GPL-3.0-or-later
*
* -----------------------------------------------------------------------------
*/
#include "GPS_L1_CA.h"
#include "gnss_signal_replica.h"
#include <armadillo>
#include <chrono>
#include <complex>
#include <cstdint>
#if USE_GLOG_AND_GFLAGS
DEFINE_int32(size_carrier_test, 100000, "Size of the arrays used for complex carrier testing");
#else
ABSL_FLAG(int32_t, size_carrier_test, 100000, "Size of the arrays used for complex carrier testing");
#endif
TEST(ComplexCarrierTest, StandardComplexImplementation)
{
// Dynamic allocation creates new usable space on the program STACK
// (an area of RAM specifically allocated to the program)
#if USE_GLOG_AND_GFLAGS
auto* output = new std::complex<float>[FLAGS_size_carrier_test];
#else
auto* output = new std::complex<float>[absl::GetFlag(FLAGS_size_carrier_test)];
#endif
const double _f = 2000.0;
const double _fs = 2000000.0;
const auto phase_step = (TWO_PI * _f) / _fs;
double phase = 0.0;
std::chrono::time_point<std::chrono::system_clock> start, end;
start = std::chrono::system_clock::now();
#if USE_GLOG_AND_GFLAGS
for (int i = 0; i < FLAGS_size_carrier_test; i++)
#else
for (int i = 0; i < absl::GetFlag(FLAGS_size_carrier_test); i++)
#endif
{
output[i] = std::complex<float>(cos(phase), sin(phase));
phase += phase_step;
}
end = std::chrono::system_clock::now();
std::chrono::duration<double> elapsed_seconds = end - start;
#if USE_GLOG_AND_GFLAGS
std::cout << "A " << FLAGS_size_carrier_test
#else
std::cout << "A " << absl::GetFlag(FLAGS_size_carrier_test)
#endif
<< "-length complex carrier in standard C++ (dynamic allocation) generated in " << elapsed_seconds.count() * 1e6
<< " microseconds\n";
std::complex<float> expected(1, 0);
#if USE_GLOG_AND_GFLAGS
std::vector<std::complex<float>> mag(FLAGS_size_carrier_test);
for (int i = 0; i < FLAGS_size_carrier_test; i++)
#else
std::vector<std::complex<float>> mag(absl::GetFlag(FLAGS_size_carrier_test));
for (int i = 0; i < absl::GetFlag(FLAGS_size_carrier_test); i++)
#endif
{
mag[i] = output[i] * std::conj(output[i]);
}
delete[] output;
#if USE_GLOG_AND_GFLAGS
for (int i = 0; i < FLAGS_size_carrier_test; i++)
#else
for (int i = 0; i < absl::GetFlag(FLAGS_size_carrier_test); i++)
#endif
{
ASSERT_FLOAT_EQ(std::norm(expected), std::norm(mag[i]));
}
ASSERT_LE(0, elapsed_seconds.count() * 1e6);
}
TEST(ComplexCarrierTest, C11ComplexImplementation)
{
// declaration: load data onto the program data segment
#if USE_GLOG_AND_GFLAGS
std::vector<std::complex<float>> output(FLAGS_size_carrier_test);
#else
std::vector<std::complex<float>> output(absl::GetFlag(FLAGS_size_carrier_test));
#endif
const double _f = 2000.0;
const double _fs = 2000000.0;
const auto phase_step = (TWO_PI * _f) / _fs;
double phase = 0.0;
std::chrono::time_point<std::chrono::system_clock> start, end;
start = std::chrono::system_clock::now();
#if USE_GLOG_AND_GFLAGS
for (int i = 0; i < FLAGS_size_carrier_test; i++)
#else
for (int i = 0; i < absl::GetFlag(FLAGS_size_carrier_test); i++)
#endif
{
output[i] = std::complex<float>(cos(phase), sin(phase));
phase += phase_step;
}
end = std::chrono::system_clock::now();
std::chrono::duration<double> elapsed_seconds = end - start;
#if USE_GLOG_AND_GFLAGS
std::cout << "A " << FLAGS_size_carrier_test
#else
std::cout << "A " << absl::GetFlag(FLAGS_size_carrier_test)
#endif
<< "-length complex carrier in standard C++ (declaration) generated in " << elapsed_seconds.count() * 1e6
<< " microseconds\n";
ASSERT_LE(0, elapsed_seconds.count() * 1e6);
std::complex<float> expected(1, 0);
#if USE_GLOG_AND_GFLAGS
std::vector<std::complex<float>> mag(FLAGS_size_carrier_test);
for (int i = 0; i < FLAGS_size_carrier_test; i++)
#else
std::vector<std::complex<float>> mag(absl::GetFlag(FLAGS_size_carrier_test));
for (int i = 0; i < absl::GetFlag(FLAGS_size_carrier_test); i++)
#endif
{
mag[i] = output[i] * std::conj(output[i]);
ASSERT_FLOAT_EQ(std::norm(expected), std::norm(mag[i]));
}
}
TEST(ComplexCarrierTest, OwnComplexImplementation)
{
#if USE_GLOG_AND_GFLAGS
std::vector<std::complex<float>> output(FLAGS_size_carrier_test);
#else
std::vector<std::complex<float>> output(absl::GetFlag(FLAGS_size_carrier_test));
#endif
double _f = 2000.0;
double _fs = 2000000.0;
std::chrono::time_point<std::chrono::system_clock> start, end;
start = std::chrono::system_clock::now();
complex_exp_gen(output, _f, _fs);
end = std::chrono::system_clock::now();
std::chrono::duration<double> elapsed_seconds = end - start;
#if USE_GLOG_AND_GFLAGS
std::cout << "A " << FLAGS_size_carrier_test
#else
std::cout << "A " << absl::GetFlag(FLAGS_size_carrier_test)
#endif
<< "-length complex carrier using fixed point generated in " << elapsed_seconds.count() * 1e6
<< " microseconds\n";
std::complex<float> expected(1, 0);
#if USE_GLOG_AND_GFLAGS
std::vector<std::complex<float>> mag(FLAGS_size_carrier_test);
for (int i = 0; i < FLAGS_size_carrier_test; i++)
#else
std::vector<std::complex<float>> mag(absl::GetFlag(FLAGS_size_carrier_test));
for (int i = 0; i < absl::GetFlag(FLAGS_size_carrier_test); i++)
#endif
{
mag[i] = output[i] * std::conj(output[i]);
}
#if USE_GLOG_AND_GFLAGS
for (int i = 0; i < FLAGS_size_carrier_test; i++)
#else
for (int i = 0; i < absl::GetFlag(FLAGS_size_carrier_test); i++)
#endif
{
ASSERT_NEAR(std::norm(expected), std::norm(mag[i]), 0.0001);
}
ASSERT_LE(0, elapsed_seconds.count() * 1e6);
}