mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2024-11-18 07:44:57 +00:00
384 lines
12 KiB
C++
384 lines
12 KiB
C++
/*!
|
||
* \file cubature_filter.cc
|
||
* \brief Interface of a library for nonlinear tracking algorithms
|
||
*
|
||
* Cubature_Filter implements the functionality of the Cubature Kalman
|
||
* Filter, which uses multidimensional cubature rules to estimate the
|
||
* time evolution of a nonlinear system. UnscentedFilter implements
|
||
* an Unscented Kalman Filter which uses Unscented Transform rules to
|
||
* perform a similar estimation.
|
||
*
|
||
* [1] I Arasaratnam and S Haykin. Cubature kalman filters. IEEE
|
||
* Transactions on Automatic Control, 54(6):1254–1269,2009.
|
||
*
|
||
* \authors <ul>
|
||
* <li> Gerald LaMountain, 2019. gerald(at)ece.neu.edu
|
||
* <li> Jordi Vila-Valls 2019. jvila(at)cttc.es
|
||
* </ul>
|
||
* -------------------------------------------------------------------------
|
||
*
|
||
* Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors)
|
||
*
|
||
* GNSS-SDR is a software defined Global Navigation
|
||
* Satellite Systems receiver
|
||
*
|
||
* This file is part of GNSS-SDR.
|
||
*
|
||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||
* it under the terms of the GNU General Public License as published by
|
||
* the Free Software Foundation, either version 3 of the License, or
|
||
* (at your option) any later version.
|
||
*
|
||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
* GNU General Public License for more details.
|
||
*
|
||
* You should have received a copy of the GNU General Public License
|
||
* along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
|
||
*
|
||
* -------------------------------------------------------------------------
|
||
*/
|
||
|
||
#include "nonlinear_tracking.h"
|
||
|
||
/***************** CUBATURE KALMAN FILTER *****************/
|
||
|
||
CubatureFilter::CubatureFilter()
|
||
{
|
||
int nx = 1;
|
||
x_pred_out = arma::zeros(nx, 1);
|
||
P_x_pred_out = arma::eye(nx, nx) * (nx + 1);
|
||
|
||
x_est = x_pred_out;
|
||
P_x_est = P_x_pred_out;
|
||
}
|
||
|
||
|
||
CubatureFilter::CubatureFilter(int nx)
|
||
{
|
||
x_pred_out = arma::zeros(nx, 1);
|
||
P_x_pred_out = arma::eye(nx, nx) * (nx + 1);
|
||
|
||
x_est = x_pred_out;
|
||
P_x_est = P_x_pred_out;
|
||
}
|
||
|
||
|
||
CubatureFilter::CubatureFilter(const arma::vec& x_pred_0, const arma::mat& P_x_pred_0)
|
||
{
|
||
x_pred_out = x_pred_0;
|
||
P_x_pred_out = P_x_pred_0;
|
||
|
||
x_est = x_pred_out;
|
||
P_x_est = P_x_pred_out;
|
||
}
|
||
|
||
|
||
void CubatureFilter::initialize(const arma::mat& x_pred_0, const arma::mat& P_x_pred_0)
|
||
{
|
||
x_pred_out = x_pred_0;
|
||
P_x_pred_out = P_x_pred_0;
|
||
|
||
x_est = x_pred_out;
|
||
P_x_est = P_x_pred_out;
|
||
}
|
||
|
||
|
||
/*
|
||
* Perform the prediction step of the cubature Kalman filter
|
||
*/
|
||
void CubatureFilter::predict_sequential(const arma::vec& x_post, const arma::mat& P_x_post, ModelFunction* transition_fcn, const arma::mat& noise_covariance)
|
||
{
|
||
// Compute number of cubature points
|
||
int nx = x_post.n_elem;
|
||
int np = 2 * nx;
|
||
|
||
// Generator Matrix
|
||
arma::mat gen_one = arma::join_horiz(arma::eye(nx, nx), -1.0 * arma::eye(nx, nx));
|
||
|
||
// Initialize predicted mean and covariance
|
||
arma::vec x_pred = arma::zeros(nx, 1);
|
||
arma::mat P_x_pred = arma::zeros(nx, nx);
|
||
|
||
// Factorize posterior covariance
|
||
arma::mat Sm_post = arma::chol(P_x_post, "lower");
|
||
|
||
// Propagate and evaluate cubature points
|
||
arma::vec Xi_post;
|
||
arma::vec Xi_pred;
|
||
|
||
for (uint8_t i = 0; i < np; i++)
|
||
{
|
||
Xi_post = Sm_post * (std::sqrt(static_cast<float>(np) / 2.0) * gen_one.col(i)) + x_post;
|
||
Xi_pred = (*transition_fcn)(Xi_post);
|
||
|
||
x_pred = x_pred + Xi_pred;
|
||
P_x_pred = P_x_pred + Xi_pred * Xi_pred.t();
|
||
}
|
||
|
||
// Compute predicted mean and error covariance
|
||
x_pred = x_pred / static_cast<float>(np);
|
||
P_x_pred = P_x_pred / static_cast<float>(np) - x_pred * x_pred.t() + noise_covariance;
|
||
|
||
// Store predicted mean and error covariance
|
||
x_pred_out = x_pred;
|
||
P_x_pred_out = P_x_pred;
|
||
}
|
||
|
||
|
||
/*
|
||
* Perform the update step of the cubature Kalman filter
|
||
*/
|
||
void CubatureFilter::update_sequential(const arma::vec& z_upd, const arma::vec& x_pred, const arma::mat& P_x_pred, ModelFunction* measurement_fcn, const arma::mat& noise_covariance)
|
||
{
|
||
// Compute number of cubature points
|
||
int nx = x_pred.n_elem;
|
||
int nz = z_upd.n_elem;
|
||
int np = 2 * nx;
|
||
|
||
// Generator Matrix
|
||
arma::mat gen_one = arma::join_horiz(arma::eye(nx, nx), -1.0 * arma::eye(nx, nx));
|
||
|
||
// Initialize estimated predicted measurement and covariances
|
||
arma::mat z_pred = arma::zeros(nz, 1);
|
||
arma::mat P_zz_pred = arma::zeros(nz, nz);
|
||
arma::mat P_xz_pred = arma::zeros(nx, nz);
|
||
|
||
// Factorize predicted covariance
|
||
arma::mat Sm_pred = arma::chol(P_x_pred, "lower");
|
||
|
||
// Propagate and evaluate cubature points
|
||
arma::vec Xi_pred;
|
||
arma::vec Zi_pred;
|
||
for (uint8_t i = 0; i < np; i++)
|
||
{
|
||
Xi_pred = Sm_pred * (std::sqrt(static_cast<float>(np) / 2.0) * gen_one.col(i)) + x_pred;
|
||
Zi_pred = (*measurement_fcn)(Xi_pred);
|
||
|
||
z_pred = z_pred + Zi_pred;
|
||
P_zz_pred = P_zz_pred + Zi_pred * Zi_pred.t();
|
||
P_xz_pred = P_xz_pred + Xi_pred * Zi_pred.t();
|
||
}
|
||
|
||
// Compute measurement mean, covariance and cross covariance
|
||
z_pred = z_pred / static_cast<float>(np);
|
||
P_zz_pred = P_zz_pred / static_cast<float>(np) - z_pred * z_pred.t() + noise_covariance;
|
||
P_xz_pred = P_xz_pred / static_cast<float>(np) - x_pred * z_pred.t();
|
||
|
||
// Compute cubature Kalman gain
|
||
arma::mat W_k = P_xz_pred * arma::inv(P_zz_pred);
|
||
|
||
// Compute and store the updated mean and error covariance
|
||
x_est = x_pred + W_k * (z_upd - z_pred);
|
||
P_x_est = P_x_pred - W_k * P_zz_pred * W_k.t();
|
||
}
|
||
|
||
|
||
arma::mat CubatureFilter::get_x_pred() const
|
||
{
|
||
return x_pred_out;
|
||
}
|
||
|
||
|
||
arma::mat CubatureFilter::get_P_x_pred() const
|
||
{
|
||
return P_x_pred_out;
|
||
}
|
||
|
||
|
||
arma::mat CubatureFilter::get_x_est() const
|
||
{
|
||
return x_est;
|
||
}
|
||
|
||
|
||
arma::mat CubatureFilter::get_P_x_est() const
|
||
{
|
||
return P_x_est;
|
||
}
|
||
/***************** END CUBATURE KALMAN FILTER *****************/
|
||
|
||
|
||
/***************** UNSCENTED KALMAN FILTER *****************/
|
||
|
||
UnscentedFilter::UnscentedFilter()
|
||
{
|
||
int nx = 1;
|
||
x_pred_out = arma::zeros(nx, 1);
|
||
P_x_pred_out = arma::eye(nx, nx) * (nx + 1);
|
||
|
||
x_est = x_pred_out;
|
||
P_x_est = P_x_pred_out;
|
||
}
|
||
|
||
|
||
UnscentedFilter::UnscentedFilter(int nx)
|
||
{
|
||
x_pred_out = arma::zeros(nx, 1);
|
||
P_x_pred_out = arma::eye(nx, nx) * (nx + 1);
|
||
|
||
x_est = x_pred_out;
|
||
P_x_est = P_x_pred_out;
|
||
}
|
||
|
||
|
||
UnscentedFilter::UnscentedFilter(const arma::vec& x_pred_0, const arma::mat& P_x_pred_0)
|
||
{
|
||
x_pred_out = x_pred_0;
|
||
P_x_pred_out = P_x_pred_0;
|
||
|
||
x_est = x_pred_out;
|
||
P_x_est = P_x_pred_out;
|
||
}
|
||
|
||
|
||
void UnscentedFilter::initialize(const arma::mat& x_pred_0, const arma::mat& P_x_pred_0)
|
||
{
|
||
x_pred_out = x_pred_0;
|
||
P_x_pred_out = P_x_pred_0;
|
||
|
||
x_est = x_pred_out;
|
||
P_x_est = P_x_pred_out;
|
||
}
|
||
|
||
|
||
/*
|
||
* Perform the prediction step of the Unscented Kalman filter
|
||
*/
|
||
void UnscentedFilter::predict_sequential(const arma::vec& x_post, const arma::mat& P_x_post, ModelFunction* transition_fcn, const arma::mat& noise_covariance)
|
||
{
|
||
// Compute number of sigma points
|
||
int nx = x_post.n_elem;
|
||
int np = 2 * nx + 1;
|
||
|
||
float alpha = 0.001;
|
||
float kappa = 0.0;
|
||
float beta = 2.0;
|
||
|
||
float lambda = std::pow(alpha, 2.0) * (static_cast<float>(nx) + kappa) - static_cast<float>(nx);
|
||
|
||
// Compute UT Weights
|
||
float W0_m = lambda / (static_cast<float>(nx) + lambda);
|
||
float W0_c = lambda / (static_cast<float>(nx) + lambda) + (1 - std::pow(alpha, 2.0) + beta);
|
||
float Wi_m = 1.0 / (2.0 * (static_cast<float>(nx) + lambda));
|
||
|
||
// Propagate and evaluate sigma points
|
||
arma::mat Xi_fact = arma::zeros(nx, nx);
|
||
arma::mat Xi_post = arma::zeros(nx, np);
|
||
arma::mat Xi_pred = arma::zeros(nx, np);
|
||
|
||
Xi_post.col(0) = x_post;
|
||
Xi_pred.col(0) = (*transition_fcn)(Xi_post.col(0));
|
||
for (uint8_t i = 1; i <= nx; i++)
|
||
{
|
||
Xi_fact = std::sqrt(static_cast<float>(nx) + lambda) * arma::sqrtmat_sympd(P_x_post);
|
||
Xi_post.col(i) = x_post + Xi_fact.col(i - 1);
|
||
Xi_post.col(i + nx) = x_post - Xi_fact.col(i - 1);
|
||
|
||
Xi_pred.col(i) = (*transition_fcn)(Xi_post.col(i));
|
||
Xi_pred.col(i + nx) = (*transition_fcn)(Xi_post.col(i + nx));
|
||
}
|
||
|
||
// Compute predicted mean
|
||
arma::vec x_pred = W0_m * Xi_pred.col(0) + Wi_m * arma::sum(Xi_pred.cols(1, np - 1), 1);
|
||
|
||
// Compute predicted error covariance
|
||
arma::mat P_x_pred = W0_c * ((Xi_pred.col(0) - x_pred) * (Xi_pred.col(0).t() - x_pred.t()));
|
||
for (uint8_t i = 1; i < np; i++)
|
||
{
|
||
P_x_pred = P_x_pred + Wi_m * ((Xi_pred.col(i) - x_pred) * (Xi_pred.col(i).t() - x_pred.t()));
|
||
}
|
||
P_x_pred = P_x_pred + noise_covariance;
|
||
|
||
// Store predicted mean and error covariance
|
||
x_pred_out = x_pred;
|
||
P_x_pred_out = P_x_pred;
|
||
}
|
||
|
||
|
||
/*
|
||
* Perform the update step of the Unscented Kalman filter
|
||
*/
|
||
void UnscentedFilter::update_sequential(const arma::vec& z_upd, const arma::vec& x_pred, const arma::mat& P_x_pred, ModelFunction* measurement_fcn, const arma::mat& noise_covariance)
|
||
{
|
||
// Compute number of sigma points
|
||
int nx = x_pred.n_elem;
|
||
int nz = z_upd.n_elem;
|
||
int np = 2 * nx + 1;
|
||
|
||
float alpha = 0.001;
|
||
float kappa = 0.0;
|
||
float beta = 2.0;
|
||
|
||
float lambda = std::pow(alpha, 2.0) * (static_cast<float>(nx) + kappa) - static_cast<float>(nx);
|
||
|
||
// Compute UT Weights
|
||
float W0_m = lambda / (static_cast<float>(nx) + lambda);
|
||
float W0_c = lambda / (static_cast<float>(nx) + lambda) + (1.0 - std::pow(alpha, 2.0) + beta);
|
||
float Wi_m = 1.0 / (2.0 * (static_cast<float>(nx) + lambda));
|
||
|
||
// Propagate and evaluate sigma points
|
||
arma::mat Xi_fact = arma::zeros(nx, nx);
|
||
arma::mat Xi_pred = arma::zeros(nx, np);
|
||
arma::mat Zi_pred = arma::zeros(nz, np);
|
||
|
||
Xi_pred.col(0) = x_pred;
|
||
Zi_pred.col(0) = (*measurement_fcn)(Xi_pred.col(0));
|
||
for (uint8_t i = 1; i <= nx; i++)
|
||
{
|
||
Xi_fact = std::sqrt(static_cast<float>(nx) + lambda) * arma::sqrtmat_sympd(P_x_pred);
|
||
Xi_pred.col(i) = x_pred + Xi_fact.col(i - 1);
|
||
Xi_pred.col(i + nx) = x_pred - Xi_fact.col(i - 1);
|
||
|
||
Zi_pred.col(i) = (*measurement_fcn)(Xi_pred.col(i));
|
||
Zi_pred.col(i + nx) = (*measurement_fcn)(Xi_pred.col(i + nx));
|
||
}
|
||
|
||
// Compute measurement mean
|
||
arma::mat z_pred = W0_m * Zi_pred.col(0) + Wi_m * arma::sum(Zi_pred.cols(1, np - 1), 1);
|
||
|
||
// Compute measurement covariance and cross covariance
|
||
arma::mat P_zz_pred = W0_c * ((Zi_pred.col(0) - z_pred) * (Zi_pred.col(0).t() - z_pred.t()));
|
||
arma::mat P_xz_pred = W0_c * ((Xi_pred.col(0) - x_pred) * (Zi_pred.col(0).t() - z_pred.t()));
|
||
for (uint8_t i = 0; i < np; i++)
|
||
{
|
||
P_zz_pred = P_zz_pred + Wi_m * ((Zi_pred.col(i) - z_pred) * (Zi_pred.col(i).t() - z_pred.t()));
|
||
P_xz_pred = P_xz_pred + Wi_m * ((Xi_pred.col(i) - x_pred) * (Zi_pred.col(i).t() - z_pred.t()));
|
||
}
|
||
P_zz_pred = P_zz_pred + noise_covariance;
|
||
|
||
// Estimate cubature Kalman gain
|
||
arma::mat W_k = P_xz_pred * arma::inv(P_zz_pred);
|
||
|
||
// Estimate and store the updated mean and error covariance
|
||
x_est = x_pred + W_k * (z_upd - z_pred);
|
||
P_x_est = P_x_pred - W_k * P_zz_pred * W_k.t();
|
||
}
|
||
|
||
|
||
arma::mat UnscentedFilter::get_x_pred() const
|
||
{
|
||
return x_pred_out;
|
||
}
|
||
|
||
|
||
arma::mat UnscentedFilter::get_P_x_pred() const
|
||
{
|
||
return P_x_pred_out;
|
||
}
|
||
|
||
|
||
arma::mat UnscentedFilter::get_x_est() const
|
||
{
|
||
return x_est;
|
||
}
|
||
|
||
|
||
arma::mat UnscentedFilter::get_P_x_est() const
|
||
{
|
||
return P_x_est;
|
||
}
|
||
|
||
/***************** END UNSCENTED KALMAN FILTER *****************/
|