gnss-sdr/src/utils/python/lib/plotNavigation.py

135 lines
5.3 KiB
Python

"""
plotNavigation.py
Function plots variations of coordinates over time and a 3D position
plot. It plots receiver coordinates in UTM system or coordinate offsets if
the true UTM receiver coordinates are provided.
Irene Pérez Riega, 2023. iperrie@inta.es
plotNavigation(navSolutions, settings, plot_skyplot)
Args:
navSolutions - Results from navigation solution function. It
contains measured pseudoranges and receiver
coordinates.
settings - Receiver settings. The true receiver coordinates
are contained in this structure.
plot_skyplot - If == 1 then use satellite coordinates to plot the
satellite positions (not implemented yet TO DO)
Modifiable in the file:
fig_path - Path where plots will be save
-----------------------------------------------------------------------------
GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
This file is part of GNSS-SDR.
Copyright (C) 2022 (see AUTHORS file for a list of contributors)
SPDX-License-Identifier: GPL-3.0-or-later
-----------------------------------------------------------------------------
"""
import numpy as np
import matplotlib.pyplot as plt
import os
def plotNavigation(navSolutions, settings, plot_skyplot=0):
# ---------- CHANGE HERE:
fig_path = '/home/labnav/Desktop/TEST_IRENE/PLOTS/PlotNavigation'
if not os.path.exists(fig_path):
os.makedirs(fig_path)
if navSolutions:
if (np.isnan(settings['true_position']['E_UTM']) or
np.isnan(settings['true_position']['N_UTM']) or
np.isnan(settings['true_position']['U_UTM'])):
# Compute mean values
ref_coord = {
'E_UTM': np.nanmean(navSolutions['E_UTM']),
'N_UTM': np.nanmean(navSolutions['N_UTM']),
'U_UTM': np.nanmean(navSolutions['U_UTM'])
}
mean_latitude = np.nanmean(navSolutions['latitude'])
mean_longitude = np.nanmean(navSolutions['longitude'])
mean_height = np.nanmean(navSolutions['height'])
ref_point_lg_text = (f"Mean Position\nLat: {mean_latitude}º\n"
f"Long: {mean_longitude}º\n"
f"Hgt: {mean_height:+6.1f}")
else:
# Compute the mean error for static receiver
ref_coord = {
'E_UTM': settings.truePosition['E_UTM'],
'N_UTM': settings.truePosition['N_UTM'],
'U_UTM': settings.truePosition['U_UTM']
}
mean_position = {
'E_UTM': np.nanmean(navSolutions['E_UTM']),
'N_UTM': np.nanmean(navSolutions['N_UTM']),
'U_UTM': np.nanmean(navSolutions['U_UTM'])
}
error_meters = np.sqrt(
(mean_position['E_UTM'] - ref_coord['E_UTM']) ** 2 +
(mean_position['N_UTM'] - ref_coord['N_UTM']) ** 2 +
(mean_position['U_UTM'] - ref_coord['U_UTM']) ** 2)
ref_point_lg_text = (f"Reference Position, Mean 3D error = "
f"{error_meters} [m]")
#Create plot and subplots
plt.figure(figsize=(1920 / 120, 1080 / 120))
plt.clf()
plt.title('Navigation solutions',fontweight='bold')
ax1 = plt.subplot(4, 2, (1, 4))
ax2 = plt.subplot(4, 2, (5, 7), projection='3d')
ax3 = plt.subplot(4, 2, (6, 8), projection='3d')
# (ax1) Coordinate differences in UTM system from reference point
ax1.plot(np.vstack([navSolutions['E_UTM'] - ref_coord['E_UTM'],
navSolutions['N_UTM'] - ref_coord['N_UTM'],
navSolutions['U_UTM'] - ref_coord['U_UTM']]).T)
ax1.set_title('Coordinates variations in UTM system', fontweight='bold')
ax1.legend(['E_UTM', 'N_UTM', 'U_UTM'])
ax1.set_xlabel(f"Measurement period: {settings['navSolPeriod']} ms")
ax1.set_ylabel('Variations (m)')
ax1.grid(True)
ax1.axis('tight')
# (ax2) Satellite sky plot
if plot_skyplot: #todo posicion de los satelites
skyPlot(ax2, navSolutions['channel']['az'],
navSolutions['channel']['el'],
navSolutions['channel']['PRN'][:, 0])
ax2.set_title(f'Sky plot (mean PDOP: '
f'{np.nanmean(navSolutions["DOP"][1, :]):.1f})',
fontweight='bold')
# (ax3) Position plot in UTM system
ax3.scatter(navSolutions['E_UTM'] - ref_coord['E_UTM'],
navSolutions['N_UTM'] - ref_coord['N_UTM'],
navSolutions['U_UTM'] - ref_coord['U_UTM'], marker='+')
ax3.scatter([0], [0], [0], color='r', marker='+', linewidth=1.5)
ax3.view_init(0, 90)
ax3.set_box_aspect([1, 1, 1])
ax3.grid(True, which='minor')
ax3.legend(['Measurements', ref_point_lg_text])
ax3.set_title('Positions in UTM system (3D plot)',fontweight='bold')
ax3.set_xlabel('East (m)')
ax3.set_ylabel('North (m)')
ax3.set_zlabel('Upping (m)')
plt.tight_layout()
plt.savefig(os.path.join(fig_path, 'measures_UTM.png'))
plt.show()