gnss-sdr/src/algorithms/acquisition/gnuradio_blocks/galileo_e5a_noncoherent_iq_...

778 lines
40 KiB
C++

/*!
* \file galileo_e5a_noncoherent_iq_acquisition_caf_cc.cc
* \brief Adapts a PCPS acquisition block to an AcquisitionInterface for
* Galileo E5a data and pilot Signals
* \author Marc Sales, 2014. marcsales92(at)gmail.com
* \based on work from:
* <ul>
* <li> Javier Arribas, 2011. jarribas(at)cttc.es
* <li> Luis Esteve, 2012. luis(at)epsilon-formacion.com
* <li> Marc Molina, 2013. marc.molina.pena@gmail.com
* </ul>
*
* -----------------------------------------------------------------------------
*
* GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
* This file is part of GNSS-SDR.
*
* Copyright (C) 2010-2020 (see AUTHORS file for a list of contributors)
* SPDX-License-Identifier: GPL-3.0-or-later
*
* -----------------------------------------------------------------------------
*/
#include "galileo_e5a_noncoherent_iq_acquisition_caf_cc.h"
#include "MATH_CONSTANTS.h"
#include <glog/logging.h>
#include <gnuradio/io_signature.h>
#include <volk/volk.h>
#include <volk_gnsssdr/volk_gnsssdr.h>
#include <algorithm>
#include <array>
#include <exception>
#include <sstream>
galileo_e5a_noncoherentIQ_acquisition_caf_cc_sptr galileo_e5a_noncoherentIQ_make_acquisition_caf_cc(
unsigned int sampled_ms,
unsigned int max_dwells,
unsigned int doppler_max, int64_t fs_in,
int samples_per_ms, int samples_per_code,
bool bit_transition_flag,
bool dump,
const std::string &dump_filename,
bool both_signal_components_,
int CAF_window_hz_,
int Zero_padding_,
bool enable_monitor_output)
{
return galileo_e5a_noncoherentIQ_acquisition_caf_cc_sptr(
new galileo_e5a_noncoherentIQ_acquisition_caf_cc(sampled_ms, max_dwells, doppler_max, fs_in, samples_per_ms,
samples_per_code, bit_transition_flag, dump, dump_filename, both_signal_components_, CAF_window_hz_, Zero_padding_, enable_monitor_output));
}
galileo_e5a_noncoherentIQ_acquisition_caf_cc::galileo_e5a_noncoherentIQ_acquisition_caf_cc(
unsigned int sampled_ms,
unsigned int max_dwells,
unsigned int doppler_max,
int64_t fs_in,
int samples_per_ms,
int samples_per_code,
bool bit_transition_flag,
bool dump,
const std::string &dump_filename,
bool both_signal_components_,
int CAF_window_hz_,
int Zero_padding_,
bool enable_monitor_output)
: gr::block("galileo_e5a_noncoherentIQ_acquisition_caf_cc",
gr::io_signature::make(1, 1, sizeof(gr_complex)),
gr::io_signature::make(0, 1, sizeof(Gnss_Synchro))),
d_dump_filename(dump_filename),
d_gnss_synchro(nullptr),
d_fs_in(fs_in),
d_sample_counter(0ULL),
d_threshold(0),
d_doppler_freq(0),
d_mag(0),
d_input_power(0.0),
d_test_statistics(0),
d_state(0),
d_samples_per_ms(samples_per_ms),
d_samples_per_code(samples_per_code),
d_CAF_window_hz(CAF_window_hz_),
d_buffer_count(0),
d_doppler_resolution(0),
d_doppler_max(static_cast<int>(doppler_max)),
d_doppler_step(250),
d_fft_size(static_cast<int>(sampled_ms) * d_samples_per_ms),
d_num_doppler_bins(0),
d_gr_stream_buffer(0),
d_channel(0),
d_max_dwells(max_dwells),
d_well_count(0),
d_code_phase(0),
d_bit_transition_flag(bit_transition_flag),
d_active(false),
d_dump(dump),
d_both_signal_components(both_signal_components_),
d_enable_monitor_output(enable_monitor_output)
{
this->message_port_register_out(pmt::mp("events"));
if (Zero_padding_ > 0)
{
d_sampled_ms = 1;
}
else
{
d_sampled_ms = sampled_ms;
}
d_inbuffer = std::vector<gr_complex>(d_fft_size);
d_fft_code_I_A = std::vector<gr_complex>(d_fft_size);
d_magnitudeIA = std::vector<float>(d_fft_size);
if (d_both_signal_components == true)
{
d_fft_code_Q_A = std::vector<gr_complex>(d_fft_size);
d_magnitudeQA = std::vector<float>(d_fft_size);
}
// IF COHERENT INTEGRATION TIME > 1
if (d_sampled_ms > 1)
{
d_fft_code_I_B = std::vector<gr_complex>(d_fft_size);
d_magnitudeIB = std::vector<float>(d_fft_size);
if (d_both_signal_components == true)
{
d_fft_code_Q_B = std::vector<gr_complex>(d_fft_size);
d_magnitudeQB = std::vector<float>(d_fft_size);
}
}
d_fft_if = gnss_fft_fwd_make_unique(d_fft_size);
d_ifft = gnss_fft_rev_make_unique(d_fft_size);
}
galileo_e5a_noncoherentIQ_acquisition_caf_cc::~galileo_e5a_noncoherentIQ_acquisition_caf_cc()
{
try
{
if (d_dump)
{
d_dump_file.close();
}
}
catch (const std::ofstream::failure &e)
{
std::cerr << "Problem closing Acquisition dump file: " << d_dump_filename << '\n';
}
catch (const std::exception &e)
{
std::cerr << e.what() << '\n';
}
}
void galileo_e5a_noncoherentIQ_acquisition_caf_cc::set_local_code(std::complex<float> *codeI, std::complex<float> *codeQ)
{
// DATA SIGNAL
// Three replicas of data primary code. CODE A: (1,1,1)
std::copy(codeI, codeI + d_fft_size, d_fft_if->get_inbuf());
d_fft_if->execute(); // We need the FFT of local code
// Conjugate the local code
volk_32fc_conjugate_32fc(d_fft_code_I_A.data(), d_fft_if->get_outbuf(), d_fft_size);
// SAME FOR PILOT SIGNAL
if (d_both_signal_components == true)
{
// Three replicas of pilot primary code. CODE A: (1,1,1)
std::copy(codeQ, codeQ + d_fft_size, d_fft_if->get_inbuf());
d_fft_if->execute(); // We need the FFT of local code
// Conjugate the local code
volk_32fc_conjugate_32fc(d_fft_code_Q_A.data(), d_fft_if->get_outbuf(), d_fft_size);
}
// IF INTEGRATION TIME > 1 code, we need to evaluate the other possible combination
// Note: max integration time allowed = 3ms (dealt in adapter)
if (d_sampled_ms > 1)
{
// DATA CODE B: First replica is inverted (0,1,1)
#if VOLK_EQUAL_OR_GREATER_31
auto minus_one = gr_complex(-1, 0);
volk_32fc_s32fc_multiply2_32fc(&(d_fft_if->get_inbuf())[0],
&codeI[0], &minus_one,
d_samples_per_code);
#else
volk_32fc_s32fc_multiply_32fc(&(d_fft_if->get_inbuf())[0],
&codeI[0], gr_complex(-1, 0),
d_samples_per_code);
#endif
d_fft_if->execute(); // We need the FFT of local code
// Conjugate the local code
volk_32fc_conjugate_32fc(d_fft_code_I_B.data(), d_fft_if->get_outbuf(), d_fft_size);
if (d_both_signal_components == true)
{
// PILOT CODE B: First replica is inverted (0,1,1)
#if VOLK_EQUAL_OR_GREATER_31
auto minus_one = gr_complex(-1, 0);
volk_32fc_s32fc_multiply2_32fc(&(d_fft_if->get_inbuf())[0],
&codeQ[0], &minus_one,
d_samples_per_code);
#else
volk_32fc_s32fc_multiply_32fc(&(d_fft_if->get_inbuf())[0],
&codeQ[0], gr_complex(-1, 0),
d_samples_per_code);
#endif
d_fft_if->execute(); // We need the FFT of local code
// Conjugate the local code
volk_32fc_conjugate_32fc(d_fft_code_Q_B.data(), d_fft_if->get_outbuf(), d_fft_size);
}
}
}
void galileo_e5a_noncoherentIQ_acquisition_caf_cc::init()
{
d_gnss_synchro->Flag_valid_acquisition = false;
d_gnss_synchro->Flag_valid_symbol_output = false;
d_gnss_synchro->Flag_valid_pseudorange = false;
d_gnss_synchro->Flag_valid_word = false;
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_doppler_step = 0U;
d_gnss_synchro->Acq_samplestamp_samples = 0ULL;
d_mag = 0.0;
d_input_power = 0.0;
// Count the number of bins
d_num_doppler_bins = 0;
for (int doppler = -d_doppler_max;
doppler <= d_doppler_max;
doppler += d_doppler_step)
{
d_num_doppler_bins++;
}
// Create the carrier Doppler wipeoff signals
d_grid_doppler_wipeoffs = std::vector<std::vector<gr_complex>>(d_num_doppler_bins, std::vector<gr_complex>(d_fft_size));
for (int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
{
int doppler = -d_doppler_max + d_doppler_step * doppler_index;
float phase_step_rad = static_cast<float>(TWO_PI) * static_cast<float>(doppler) / static_cast<float>(d_fs_in);
std::array<float, 1> _phase{};
volk_gnsssdr_s32f_sincos_32fc(d_grid_doppler_wipeoffs[doppler_index].data(), -phase_step_rad, _phase.data(), d_fft_size);
}
/* CAF Filtering to resolve doppler ambiguity. Phase and quadrature must be processed
* separately before non-coherent integration */
if (d_CAF_window_hz > 0)
{
d_CAF_vector = std::vector<float>(d_num_doppler_bins);
d_CAF_vector_I = std::vector<float>(d_num_doppler_bins);
if (d_both_signal_components == true)
{
d_CAF_vector_Q = std::vector<float>(d_num_doppler_bins);
}
}
}
void galileo_e5a_noncoherentIQ_acquisition_caf_cc::set_state(int state)
{
d_state = state;
if (d_state == 1)
{
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0ULL;
d_gnss_synchro->Acq_doppler_step = 0U;
d_well_count = 0;
d_mag = 0.0;
d_input_power = 0.0;
d_test_statistics = 0.0;
}
else if (d_state == 0)
{
}
else
{
LOG(ERROR) << "State can only be set to 0 or 1";
}
}
int galileo_e5a_noncoherentIQ_acquisition_caf_cc::general_work(int noutput_items __attribute__((unused)),
gr_vector_int &ninput_items, gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
/*
* By J.Arribas, L.Esteve, M.Molina and M.Sales
* Acquisition strategy (Kay Borre book + CFAR threshold):
* 1. Compute the input signal power estimation
* 2. Doppler serial search loop
* 3. Perform the FFT-based circular convolution (parallel time search)
* 4. OPTIONAL: CAF filter to avoid doppler ambiguity
* 5. Record the maximum peak and the associated synchronization parameters
* 6. Compute the test statistics and compare to the threshold
* 7. Declare positive or negative acquisition using a message port
*/
int acquisition_message = -1; // 0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL
int return_value = 0; // 0=Produces no Gnss_Synchro objects
/* States: 0 Stop Channel
* 1 Load the buffer until it reaches fft_size
* 2 Acquisition algorithm
* 3 Positive acquisition
* 4 Negative acquisition
*/
switch (d_state)
{
case 0:
{
if (d_active)
{
// restart acquisition variables
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0ULL;
d_gnss_synchro->Acq_doppler_step = 0U;
d_well_count = 0;
d_mag = 0.0;
d_input_power = 0.0;
d_test_statistics = 0.0;
d_state = 1;
}
d_sample_counter += static_cast<uint64_t>(ninput_items[0]); // sample counter
consume_each(ninput_items[0]);
break;
}
case 1:
{
const auto *in = reinterpret_cast<const gr_complex *>(input_items[0]); // Get the input samples pointer
int buff_increment;
if ((ninput_items[0] + d_buffer_count) <= d_fft_size)
{
buff_increment = ninput_items[0];
}
else
{
buff_increment = d_fft_size - d_buffer_count;
}
std::copy(in, in + buff_increment, d_inbuffer.begin() + d_buffer_count);
// If buffer will be full in next iteration
if (d_buffer_count >= static_cast<int>(d_fft_size - d_gr_stream_buffer))
{
d_state = 2;
}
d_buffer_count += buff_increment;
d_sample_counter += static_cast<uint64_t>(buff_increment); // sample counter
consume_each(buff_increment);
break;
}
case 2:
{
// Fill last part of the buffer and reset counter
const auto *in = reinterpret_cast<const gr_complex *>(input_items[0]); // Get the input samples pointer
if (d_buffer_count < d_fft_size)
{
std::copy(in, in + (d_fft_size - d_buffer_count), d_inbuffer.begin() + d_buffer_count);
}
d_sample_counter += static_cast<uint64_t>(d_fft_size - d_buffer_count); // sample counter
// initialize acquisition algorithm
int doppler;
uint32_t indext = 0;
uint32_t indext_IA = 0;
uint32_t indext_IB = 0;
uint32_t indext_QA = 0;
uint32_t indext_QB = 0;
float magt = 0.0;
float magt_IA = 0.0;
float magt_IB = 0.0;
float magt_QA = 0.0;
float magt_QB = 0.0;
float fft_normalization_factor = static_cast<float>(d_fft_size) * static_cast<float>(d_fft_size);
d_input_power = 0.0;
d_mag = 0.0;
d_well_count++;
DLOG(INFO) << "Channel: " << d_channel
<< " , doing acquisition of satellite: " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN
<< " ,sample stamp: " << d_sample_counter << ", threshold: "
<< d_threshold << ", doppler_max: " << d_doppler_max
<< ", doppler_step: " << d_doppler_step;
// 1- Compute the input signal power estimation
volk_32fc_magnitude_squared_32f(d_magnitudeIA.data(), d_inbuffer.data(), d_fft_size);
volk_32f_accumulator_s32f(&d_input_power, d_magnitudeIA.data(), d_fft_size);
d_input_power /= static_cast<float>(d_fft_size);
// 2- Doppler frequency search loop
for (int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
{
// doppler search steps
doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index;
volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), d_inbuffer.data(),
d_grid_doppler_wipeoffs[doppler_index].data(), d_fft_size);
// 3- Perform the FFT-based convolution (parallel time search)
// Compute the FFT of the carrier wiped--off incoming signal
d_fft_if->execute();
// CODE IA
// Multiply carrier wiped--off, Fourier transformed incoming signal
// with the local FFT'd code reference using SIMD operations with VOLK library
volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(),
d_fft_if->get_outbuf(), d_fft_code_I_A.data(), d_fft_size);
// compute the inverse FFT
d_ifft->execute();
// Search maximum
volk_32fc_magnitude_squared_32f(d_magnitudeIA.data(), d_ifft->get_outbuf(), d_fft_size);
volk_gnsssdr_32f_index_max_32u(&indext_IA, d_magnitudeIA.data(), d_fft_size);
// Normalize the maximum value to correct the scale factor introduced by FFTW
magt_IA = d_magnitudeIA[indext_IA] / (fft_normalization_factor * fft_normalization_factor);
if (d_both_signal_components == true)
{
// REPEAT FOR ALL CODES. CODE_QA
volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(),
d_fft_if->get_outbuf(), d_fft_code_Q_A.data(), d_fft_size);
d_ifft->execute();
volk_32fc_magnitude_squared_32f(d_magnitudeQA.data(), d_ifft->get_outbuf(), d_fft_size);
volk_gnsssdr_32f_index_max_32u(&indext_QA, d_magnitudeQA.data(), d_fft_size);
magt_QA = d_magnitudeQA[indext_QA] / (fft_normalization_factor * fft_normalization_factor);
}
if (d_sampled_ms > 1) // If Integration time > 1 code
{
// REPEAT FOR ALL CODES. CODE_IB
volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(),
d_fft_if->get_outbuf(), d_fft_code_I_B.data(), d_fft_size);
d_ifft->execute();
volk_32fc_magnitude_squared_32f(d_magnitudeIB.data(), d_ifft->get_outbuf(), d_fft_size);
volk_gnsssdr_32f_index_max_32u(&indext_IB, d_magnitudeIB.data(), d_fft_size);
magt_IB = d_magnitudeIB[indext_IB] / (fft_normalization_factor * fft_normalization_factor);
if (d_both_signal_components == true)
{
// REPEAT FOR ALL CODES. CODE_QB
volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(),
d_fft_if->get_outbuf(), d_fft_code_Q_B.data(), d_fft_size);
d_ifft->execute();
volk_32fc_magnitude_squared_32f(d_magnitudeQB.data(), d_ifft->get_outbuf(), d_fft_size);
volk_gnsssdr_32f_index_max_32u(&indext_QB, d_magnitudeQB.data(), d_fft_size);
magt_QB = d_magnitudeIB[indext_QB] / (fft_normalization_factor * fft_normalization_factor);
}
}
// Integrate noncoherently the two best combinations (I² + Q²)
// and store the result in the I channel.
// If CAF filter to resolve doppler ambiguity is needed,
// peak is stored before non-coherent integration.
if (d_sampled_ms > 1) // T_integration > 1 code
{
if (magt_IA >= magt_IB)
{
if (d_CAF_window_hz > 0)
{
d_CAF_vector_I[doppler_index] = d_magnitudeIA[indext_IA];
}
if (d_both_signal_components)
{
// Integrate non-coherently I+Q
if (magt_QA >= magt_QB)
{
if (d_CAF_window_hz > 0)
{
d_CAF_vector_Q[doppler_index] = d_magnitudeQA[indext_QA];
}
for (int i = 0; i < d_fft_size; i++)
{
d_magnitudeIA[i] += d_magnitudeQA[i];
}
}
else
{
if (d_CAF_window_hz > 0)
{
d_CAF_vector_Q[doppler_index] = d_magnitudeQB[indext_QB];
}
for (int i = 0; i < d_fft_size; i++)
{
d_magnitudeIA[i] += d_magnitudeQB[i];
}
}
}
volk_gnsssdr_32f_index_max_32u(&indext, d_magnitudeIA.data(), d_fft_size);
magt = d_magnitudeIA[indext] / (fft_normalization_factor * fft_normalization_factor);
}
else
{
if (d_CAF_window_hz > 0)
{
d_CAF_vector_I[doppler_index] = d_magnitudeIB[indext_IB];
}
if (d_both_signal_components)
{
// Integrate non-coherently I+Q
if (magt_QA >= magt_QB)
{
if (d_CAF_window_hz > 0)
{
d_CAF_vector_Q[doppler_index] = d_magnitudeQA[indext_QA];
}
for (int i = 0; i < d_fft_size; i++)
{
d_magnitudeIB[i] += d_magnitudeQA[i];
}
}
else
{
if (d_CAF_window_hz > 0)
{
d_CAF_vector_Q[doppler_index] = d_magnitudeQB[indext_QB];
}
for (int i = 0; i < d_fft_size; i++)
{
d_magnitudeIB[i] += d_magnitudeQB[i];
}
}
}
volk_gnsssdr_32f_index_max_32u(&indext, d_magnitudeIB.data(), d_fft_size);
magt = d_magnitudeIB[indext] / (fft_normalization_factor * fft_normalization_factor);
}
}
else
{
if (d_CAF_window_hz > 0)
{
d_CAF_vector_I[doppler_index] = d_magnitudeIA[indext_IA];
}
if (d_both_signal_components)
{
if (d_CAF_window_hz > 0)
{
d_CAF_vector_Q[doppler_index] = d_magnitudeQA[indext_QA];
}
// NON-Coherent integration of only 1 code
for (int i = 0; i < d_fft_size; i++)
{
d_magnitudeIA[i] += d_magnitudeQA[i];
}
}
volk_gnsssdr_32f_index_max_32u(&indext, d_magnitudeIA.data(), d_fft_size);
magt = d_magnitudeIA[indext] / (fft_normalization_factor * fft_normalization_factor);
}
// 4- record the maximum peak and the associated synchronization parameters
if (d_mag < magt)
{
d_mag = magt;
// In case that d_bit_transition_flag = true, we compare the potentially
// new maximum test statistics (d_mag/d_input_power) with the value in
// d_test_statistics. When the second dwell is being processed, the value
// of d_mag/d_input_power could be lower than d_test_statistics (i.e,
// the maximum test statistics in the previous dwell is greater than
// current d_mag/d_input_power). Note that d_test_statistics is not
// restarted between consecutive dwells in multidwell operation.
if (d_test_statistics < (d_mag / d_input_power) || !d_bit_transition_flag)
{
d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % d_samples_per_code);
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter;
d_gnss_synchro->Acq_doppler_step = d_doppler_step;
// 5- Compute the test statistics and compare to the threshold
d_test_statistics = d_mag / d_input_power;
}
}
// Record results to file if required
if (d_dump)
{
std::stringstream filename;
std::streamsize n = sizeof(float) * (d_fft_size); // noncomplex file write
filename.str("");
filename << "../data/test_statistics_E5a_sat_"
<< d_gnss_synchro->PRN << "_doppler_" << doppler << ".dat";
d_dump_file.open(filename.str().c_str(), std::ios::out | std::ios::binary);
if (d_sampled_ms > 1) // If integration time > 1 code
{
if (magt_IA >= magt_IB)
{
d_dump_file.write(reinterpret_cast<char *>(d_magnitudeIA.data()), n);
}
else
{
d_dump_file.write(reinterpret_cast<char *>(d_magnitudeIB.data()), n);
}
}
else
{
d_dump_file.write(reinterpret_cast<char *>(d_magnitudeIA.data()), n);
}
d_dump_file.close();
}
}
// std::cout << "d_mag " << d_mag << ".d_sample_counter " << d_sample_counter << ". acq delay " << d_gnss_synchro->Acq_delay_samples<< " indext "<< indext << '\n';
// 6 OPTIONAL: CAF filter to avoid Doppler ambiguity in bit transition.
if (d_CAF_window_hz > 0)
{
int CAF_bins_half;
std::array<float, 1> accum{};
CAF_bins_half = d_CAF_window_hz / (2 * d_doppler_step);
float weighting_factor;
weighting_factor = 0.5F / static_cast<float>(CAF_bins_half);
// weighting_factor = 0;
// std::cout << "weighting_factor " << weighting_factor << '\n';
// Initialize first iterations
for (int doppler_index = 0; doppler_index < CAF_bins_half; doppler_index++)
{
d_CAF_vector[doppler_index] = 0;
for (int i = 0; i < CAF_bins_half + doppler_index + 1; i++)
{
d_CAF_vector[doppler_index] += d_CAF_vector_I[i] * (1.0F - weighting_factor * static_cast<float>((doppler_index - i)));
}
d_CAF_vector[doppler_index] /= 1.0F + static_cast<float>(CAF_bins_half + doppler_index) - weighting_factor * static_cast<float>(CAF_bins_half) * ((static_cast<float>(CAF_bins_half) + 1.0F) / 2.0F) - weighting_factor * static_cast<float>(doppler_index) * (static_cast<float>(doppler_index) + 1.0F) / 2.0F; // triangles = [n*(n+1)/2]
if (d_both_signal_components)
{
accum[0] = 0;
for (int i = 0; i < CAF_bins_half + doppler_index + 1; i++)
{
accum[0] += d_CAF_vector_Q[i] * (1.0F - weighting_factor * static_cast<float>(abs(doppler_index - i)));
}
accum[0] /= 1.0F + static_cast<float>(CAF_bins_half + doppler_index) - weighting_factor * static_cast<float>(CAF_bins_half) * static_cast<float>(CAF_bins_half + 1) / 2.0F - weighting_factor * static_cast<float>(doppler_index) * static_cast<float>(doppler_index + 1) / 2.0F; // triangles = [n*(n+1)/2]
d_CAF_vector[doppler_index] += accum[0];
}
}
// Body loop
for (int doppler_index = CAF_bins_half; doppler_index < d_num_doppler_bins - CAF_bins_half; doppler_index++)
{
d_CAF_vector[doppler_index] = 0;
for (int i = doppler_index - CAF_bins_half; i < doppler_index + CAF_bins_half + 1; i++)
{
d_CAF_vector[doppler_index] += d_CAF_vector_I[i] * (1.0F - weighting_factor * static_cast<float>((doppler_index - i)));
}
d_CAF_vector[doppler_index] /= 1.0F + 2.0F * static_cast<float>(CAF_bins_half) - 2.0F * weighting_factor * static_cast<float>(CAF_bins_half) * static_cast<float>(CAF_bins_half + 1) / 2.0F;
if (d_both_signal_components)
{
accum[0] = 0;
for (int i = doppler_index - CAF_bins_half; i < doppler_index + CAF_bins_half + 1; i++)
{
accum[0] += d_CAF_vector_Q[i] * (1 - weighting_factor * static_cast<float>((doppler_index - i)));
}
accum[0] /= 1.0F + 2.0F * static_cast<float>(CAF_bins_half) - 2.0F * weighting_factor * static_cast<float>(CAF_bins_half) * static_cast<float>(CAF_bins_half + 1) / 2.0F;
d_CAF_vector[doppler_index] += accum[0];
}
}
// Final iterations
for (int doppler_index = d_num_doppler_bins - CAF_bins_half; doppler_index < static_cast<int>(d_num_doppler_bins); doppler_index++)
{
d_CAF_vector[doppler_index] = 0;
for (int i = doppler_index - CAF_bins_half; i < static_cast<int>(d_num_doppler_bins); i++)
{
d_CAF_vector[doppler_index] += d_CAF_vector_I[i] * (1.0F - weighting_factor * static_cast<float>(abs(doppler_index - i)));
}
d_CAF_vector[doppler_index] /= 1.0F + static_cast<float>(CAF_bins_half) + static_cast<float>(d_num_doppler_bins - doppler_index - 1) - weighting_factor * static_cast<float>(CAF_bins_half) * (static_cast<float>(CAF_bins_half) + 1.0F) / 2.0F - weighting_factor * (d_num_doppler_bins - doppler_index - 1) * static_cast<float>(d_num_doppler_bins - doppler_index) / 2.0F;
if (d_both_signal_components)
{
accum[0] = 0;
for (int i = doppler_index - CAF_bins_half; i < static_cast<int>(d_num_doppler_bins); i++)
{
accum[0] += d_CAF_vector_Q[i] * (1.0F - weighting_factor * static_cast<float>(abs(doppler_index - i)));
}
accum[0] /= static_cast<float>(1.0F + static_cast<float>(CAF_bins_half) + static_cast<float>(d_num_doppler_bins - doppler_index - 1) - weighting_factor * static_cast<float>(CAF_bins_half) * static_cast<float>(CAF_bins_half + 1.0) / 2.0 - weighting_factor * static_cast<float>(d_num_doppler_bins - doppler_index - 1) * static_cast<float>(d_num_doppler_bins - doppler_index) / 2.0);
d_CAF_vector[doppler_index] += accum[0];
}
}
// Recompute the maximum doppler peak
volk_gnsssdr_32f_index_max_32u(&indext, d_CAF_vector.data(), d_num_doppler_bins);
doppler = -d_doppler_max + d_doppler_step * static_cast<int>(indext);
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
// Dump if required, appended at the end of the file
if (d_dump)
{
std::stringstream filename;
std::streamsize n = sizeof(float) * (d_num_doppler_bins); // noncomplex file write
filename.str("");
filename << "../data/test_statistics_E5a_sat_" << d_gnss_synchro->PRN << "_CAF.dat";
d_dump_file.open(filename.str().c_str(), std::ios::out | std::ios::binary);
d_dump_file.write(reinterpret_cast<char *>(d_CAF_vector.data()), n);
d_dump_file.close();
}
}
if (d_well_count == d_max_dwells)
{
if (d_test_statistics > d_threshold)
{
d_state = 3; // Positive acquisition
}
else
{
d_state = 4; // Negative acquisition
}
}
else
{
d_state = 1;
}
consume_each(d_fft_size - d_buffer_count);
d_buffer_count = 0;
break;
}
case 3:
{
// 7.1- Declare positive acquisition using a message port
DLOG(INFO) << "positive acquisition";
DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN;
DLOG(INFO) << "sample_stamp " << d_sample_counter;
DLOG(INFO) << "test statistics value " << d_test_statistics;
DLOG(INFO) << "test statistics threshold " << d_threshold;
DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples;
DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz;
DLOG(INFO) << "magnitude " << d_mag;
DLOG(INFO) << "input signal power " << d_input_power;
d_active = false;
d_state = 0;
acquisition_message = 1;
this->message_port_pub(pmt::mp("events"), pmt::from_long(acquisition_message));
d_sample_counter += static_cast<uint64_t>(ninput_items[0]); // sample counter
consume_each(ninput_items[0]);
// Copy and push current Gnss_Synchro to monitor queue
if (d_enable_monitor_output)
{
auto **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]);
Gnss_Synchro current_synchro_data = Gnss_Synchro();
current_synchro_data = *d_gnss_synchro;
*out[0] = std::move(current_synchro_data);
return_value = 1; // Number of Gnss_Synchro objects produced
}
break;
}
case 4:
{
// 7.2- Declare negative acquisition using a message port
DLOG(INFO) << "negative acquisition";
DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN;
DLOG(INFO) << "sample_stamp " << d_sample_counter;
DLOG(INFO) << "test statistics value " << d_test_statistics;
DLOG(INFO) << "test statistics threshold " << d_threshold;
DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples;
DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz;
DLOG(INFO) << "magnitude " << d_mag;
DLOG(INFO) << "input signal power " << d_input_power;
d_active = false;
d_state = 0;
d_sample_counter += static_cast<uint64_t>(ninput_items[0]); // sample counter
consume_each(ninput_items[0]);
acquisition_message = 2;
this->message_port_pub(pmt::mp("events"), pmt::from_long(acquisition_message));
break;
}
}
return return_value;
}