mirror of
				https://github.com/gnss-sdr/gnss-sdr
				synced 2025-10-30 23:03:05 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			364 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			364 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*!
 | |
|  * \file galileo_e1_ls_pvt.cc
 | |
|  * \brief Implementation of a Least Squares Position, Velocity, and Time
 | |
|  * (PVT) solver, based on K.Borre's Matlab receiver.
 | |
|  * \author Javier Arribas, 2011. jarribas(at)cttc.es
 | |
|  *
 | |
|  * -------------------------------------------------------------------------
 | |
|  *
 | |
|  * Copyright (C) 2010-2015  (see AUTHORS file for a list of contributors)
 | |
|  *
 | |
|  * GNSS-SDR is a software defined Global Navigation
 | |
|  *          Satellite Systems receiver
 | |
|  *
 | |
|  * This file is part of GNSS-SDR.
 | |
|  *
 | |
|  * GNSS-SDR is free software: you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation, either version 3 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * GNSS-SDR is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
 | |
|  *
 | |
|  * -------------------------------------------------------------------------
 | |
|  */
 | |
| 
 | |
| #include "hybrid_ls_pvt.h"
 | |
| #include <glog/logging.h>
 | |
| #include "Galileo_E1.h"
 | |
| 
 | |
| 
 | |
| using google::LogMessage;
 | |
| 
 | |
| hybrid_ls_pvt::hybrid_ls_pvt(int nchannels, std::string dump_filename, bool flag_dump_to_file) : Ls_Pvt()
 | |
| {
 | |
|     // init empty ephemeris for all the available GNSS channels
 | |
|     d_nchannels = nchannels;
 | |
|     d_dump_filename = dump_filename;
 | |
|     d_flag_dump_enabled = flag_dump_to_file;
 | |
|     d_galileo_current_time = 0;
 | |
|     count_valid_position = 0;
 | |
|     d_flag_averaging = false;
 | |
|     // ############# ENABLE DATA FILE LOG #################
 | |
|     if (d_flag_dump_enabled == true)
 | |
|         {
 | |
|             if (d_dump_file.is_open() == false)
 | |
|                 {
 | |
|                     try
 | |
|                     {
 | |
|                             d_dump_file.exceptions (std::ifstream::failbit | std::ifstream::badbit);
 | |
|                             d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
 | |
|                             LOG(INFO) << "PVT lib dump enabled Log file: " << d_dump_filename.c_str();
 | |
|                     }
 | |
|                     catch (const std::ifstream::failure &e)
 | |
|                     {
 | |
|                             LOG(WARNING) << "Exception opening PVT lib dump file " << e.what();
 | |
|                     }
 | |
|                 }
 | |
|         }
 | |
| }
 | |
| 
 | |
| 
 | |
| hybrid_ls_pvt::~hybrid_ls_pvt()
 | |
| {
 | |
|     d_dump_file.close();
 | |
| }
 | |
| 
 | |
| 
 | |
| bool hybrid_ls_pvt::get_PVT(std::map<int,Gnss_Synchro> gnss_observables_map, double hybrid_current_time, bool flag_averaging)
 | |
| {
 | |
|     std::map<int,Gnss_Synchro>::iterator gnss_observables_iter;
 | |
|     std::map<int,Galileo_Ephemeris>::iterator galileo_ephemeris_iter;
 | |
|     std::map<int,Gps_Ephemeris>::iterator gps_ephemeris_iter;
 | |
|     std::map<int,Gps_CNAV_Ephemeris>::iterator gps_cnav_ephemeris_iter;
 | |
| 
 | |
|     int valid_observables = gnss_observables_map.size();
 | |
| 
 | |
|     arma::mat W = arma::eye(valid_observables, valid_observables); // channels weights matrix
 | |
|     arma::vec obs = arma::zeros(valid_observables);                 // observables observation vector
 | |
|     arma::mat satpos = arma::zeros(3, valid_observables);           // satellite positions matrix
 | |
| 
 | |
|     int Galileo_week_number = 0;
 | |
|     int GPS_week = 0;
 | |
|     double utc = 0.0;
 | |
|     double GST = 0.0;
 | |
|     //double utc_tx_corrected = 0.0; //utc computed at tx_time_corrected, added for Galileo constellation (in GPS utc is directly computed at TX_time_corrected_s)
 | |
|     double TX_time_corrected_s = 0.0;
 | |
|     double SV_clock_bias_s = 0.0;
 | |
| 
 | |
|     d_flag_averaging = flag_averaging;
 | |
| 
 | |
|     // ********************************************************************************
 | |
|     // ****** PREPARE THE LEAST SQUARES DATA (SV POSITIONS MATRIX AND OBS VECTORS) ****
 | |
|     // ********************************************************************************
 | |
|     int valid_obs = 0; //valid observations counter
 | |
|     int obs_counter = 0;
 | |
| 
 | |
|     for(gnss_observables_iter = gnss_observables_map.begin();
 | |
|             gnss_observables_iter != gnss_observables_map.end();
 | |
|             gnss_observables_iter++)
 | |
|         {
 | |
|             if(gnss_observables_iter->second.System == 'E')
 | |
|                 {
 | |
|                     // 1 Gal - find the ephemeris for the current GALILEO SV observation. The SV PRN ID is the map key
 | |
|                     galileo_ephemeris_iter = galileo_ephemeris_map.find(gnss_observables_iter->second.PRN);
 | |
|                     if (galileo_ephemeris_iter != galileo_ephemeris_map.end())
 | |
|                         {
 | |
|                             /*!
 | |
|                              * \todo Place here the satellite CN0 (power level, or weight factor)
 | |
|                              */
 | |
|                             W(obs_counter, obs_counter) = 1;
 | |
| 
 | |
|                             // COMMON RX TIME PVT ALGORITHM
 | |
|                             double Rx_time = hybrid_current_time;
 | |
|                             double Tx_time = Rx_time - gnss_observables_iter->second.Pseudorange_m / GALILEO_C_m_s;
 | |
| 
 | |
|                             // 2- compute the clock drift using the clock model (broadcast) for this SV
 | |
|                             SV_clock_bias_s = galileo_ephemeris_iter->second.sv_clock_drift(Tx_time);
 | |
| 
 | |
|                             // 3- compute the current ECEF position for this SV using corrected TX time
 | |
|                             TX_time_corrected_s = Tx_time - SV_clock_bias_s;
 | |
|                             galileo_ephemeris_iter->second.satellitePosition(TX_time_corrected_s);
 | |
| 
 | |
|                             satpos(0,obs_counter) = galileo_ephemeris_iter->second.d_satpos_X;
 | |
|                             satpos(1,obs_counter) = galileo_ephemeris_iter->second.d_satpos_Y;
 | |
|                             satpos(2,obs_counter) = galileo_ephemeris_iter->second.d_satpos_Z;
 | |
| 
 | |
|                             // 5- fill the observations vector with the corrected observables
 | |
|                             obs(obs_counter) = gnss_observables_iter->second.Pseudorange_m + SV_clock_bias_s * GALILEO_C_m_s;
 | |
|                             d_visible_satellites_IDs[valid_obs] = galileo_ephemeris_iter->second.i_satellite_PRN;
 | |
|                             d_visible_satellites_CN0_dB[valid_obs] = gnss_observables_iter->second.CN0_dB_hz;
 | |
|                             valid_obs++;
 | |
| 
 | |
|                             Galileo_week_number = galileo_ephemeris_iter->second.WN_5; //for GST
 | |
|                             GST = galileo_ephemeris_iter->second.Galileo_System_Time(Galileo_week_number, hybrid_current_time);
 | |
| 
 | |
|                             // SV ECEF DEBUG OUTPUT
 | |
|                             DLOG(INFO) << "ECEF satellite SV ID=" << galileo_ephemeris_iter->second.i_satellite_PRN
 | |
|                                     << " X=" << galileo_ephemeris_iter->second.d_satpos_X
 | |
|                                     << " [m] Y=" << galileo_ephemeris_iter->second.d_satpos_Y
 | |
|                                     << " [m] Z=" << galileo_ephemeris_iter->second.d_satpos_Z
 | |
|                                     << " [m] PR_obs=" << obs(obs_counter) << " [m]";
 | |
|                         }
 | |
| 
 | |
|                     else // the ephemeris are not available for this SV
 | |
|                         {
 | |
|                             // no valid pseudorange for the current SV
 | |
|                             W(obs_counter, obs_counter) = 0; // SV de-activated
 | |
|                             obs(obs_counter) = 1;            // to avoid algorithm problems (divide by zero)
 | |
|                             DLOG(INFO) << "No ephemeris data for SV " << gnss_observables_iter->second.PRN;
 | |
|                         }
 | |
|                 }
 | |
| 
 | |
|             else if(gnss_observables_iter->second.System == 'G')
 | |
|                 {
 | |
|                     //std::cout << "Satellite System: " << gnss_observables_iter->second.System <<std::endl;
 | |
|                     // 1 GPS - find the ephemeris for the current GPS SV observation. The SV PRN ID is the map key
 | |
|                     std::string sig_(gnss_observables_iter->second.Signal);
 | |
|                     if(sig_.compare("1C") == 0)
 | |
|                         {
 | |
|                             gps_ephemeris_iter = gps_ephemeris_map.find(gnss_observables_iter->second.PRN);
 | |
|                             if (gps_ephemeris_iter != gps_ephemeris_map.end())
 | |
|                                 {
 | |
|                                     /*!
 | |
|                                      * \todo Place here the satellite CN0 (power level, or weight factor)
 | |
|                                      */
 | |
|                                     W(obs_counter, obs_counter) = 1;
 | |
| 
 | |
|                                     // COMMON RX TIME PVT ALGORITHM MODIFICATION (Like RINEX files)
 | |
|                                     // first estimate of transmit time
 | |
|                                     double Rx_time = hybrid_current_time;
 | |
|                                     double Tx_time = Rx_time - gnss_observables_iter->second.Pseudorange_m / GPS_C_m_s;
 | |
| 
 | |
|                                     // 2- compute the clock drift using the clock model (broadcast) for this SV
 | |
|                                     SV_clock_bias_s = gps_ephemeris_iter->second.sv_clock_drift(Tx_time);
 | |
| 
 | |
|                                     // 3- compute the current ECEF position for this SV using corrected TX time
 | |
|                                     TX_time_corrected_s = Tx_time - SV_clock_bias_s;
 | |
|                                     gps_ephemeris_iter->second.satellitePosition(TX_time_corrected_s);
 | |
| 
 | |
|                                     satpos(0, obs_counter) = gps_ephemeris_iter->second.d_satpos_X;
 | |
|                                     satpos(1, obs_counter) = gps_ephemeris_iter->second.d_satpos_Y;
 | |
|                                     satpos(2, obs_counter) = gps_ephemeris_iter->second.d_satpos_Z;
 | |
| 
 | |
|                                     // 5- fill the observations vector with the corrected observables
 | |
|                                     obs(obs_counter) = gnss_observables_iter->second.Pseudorange_m + SV_clock_bias_s * GPS_C_m_s;
 | |
|                                     d_visible_satellites_IDs[valid_obs] = gps_ephemeris_iter->second.i_satellite_PRN;
 | |
|                                     d_visible_satellites_CN0_dB[valid_obs] = gnss_observables_iter->second.CN0_dB_hz;
 | |
|                                     valid_obs++;
 | |
|                                     GPS_week = gps_ephemeris_iter->second.i_GPS_week;
 | |
| 
 | |
|                                     // SV ECEF DEBUG OUTPUT
 | |
|                                     DLOG(INFO) << "(new)ECEF satellite SV ID=" << gps_ephemeris_iter->second.i_satellite_PRN
 | |
|                                             << " X=" << gps_ephemeris_iter->second.d_satpos_X
 | |
|                                             << " [m] Y=" << gps_ephemeris_iter->second.d_satpos_Y
 | |
|                                             << " [m] Z=" << gps_ephemeris_iter->second.d_satpos_Z
 | |
|                                             << " [m] PR_obs=" << obs(obs_counter) << " [m]";
 | |
|                                 }
 | |
|                             else // the ephemeris are not available for this SV
 | |
|                                 {
 | |
|                                     // no valid pseudorange for the current SV
 | |
|                                     W(obs_counter, obs_counter) = 0; // SV de-activated
 | |
|                                     obs(obs_counter) = 1;            // to avoid algorithm problems (divide by zero)
 | |
|                                     DLOG(INFO) << "No ephemeris data for SV " << gnss_observables_iter->second.PRN;
 | |
|                                 }
 | |
|                         }
 | |
|                     if(sig_.compare("2S") == 0)
 | |
|                         {
 | |
|                             gps_cnav_ephemeris_iter = gps_cnav_ephemeris_map.find(gnss_observables_iter->second.PRN);
 | |
|                             if (gps_cnav_ephemeris_iter != gps_cnav_ephemeris_map.end())
 | |
|                                 {
 | |
|                                     /*!
 | |
|                                      * \todo Place here the satellite CN0 (power level, or weight factor)
 | |
|                                      */
 | |
|                                     W(obs_counter, obs_counter) = 1;
 | |
| 
 | |
|                                     // COMMON RX TIME PVT ALGORITHM MODIFICATION (Like RINEX files)
 | |
|                                     // first estimate of transmit time
 | |
|                                     double Rx_time = hybrid_current_time;
 | |
|                                     double Tx_time = Rx_time - gnss_observables_iter->second.Pseudorange_m / GPS_C_m_s;
 | |
| 
 | |
|                                     // 2- compute the clock drift using the clock model (broadcast) for this SV
 | |
|                                     SV_clock_bias_s = gps_cnav_ephemeris_iter->second.sv_clock_drift(Tx_time);
 | |
| 
 | |
|                                     // 3- compute the current ECEF position for this SV using corrected TX time
 | |
|                                     TX_time_corrected_s = Tx_time - SV_clock_bias_s;
 | |
|                                     gps_cnav_ephemeris_iter->second.satellitePosition(TX_time_corrected_s);
 | |
| 
 | |
|                                     satpos(0, obs_counter) = gps_cnav_ephemeris_iter->second.d_satpos_X;
 | |
|                                     satpos(1, obs_counter) = gps_cnav_ephemeris_iter->second.d_satpos_Y;
 | |
|                                     satpos(2, obs_counter) = gps_cnav_ephemeris_iter->second.d_satpos_Z;
 | |
| 
 | |
|                                     // 5- fill the observations vector with the corrected observables
 | |
|                                     obs(obs_counter) = gnss_observables_iter->second.Pseudorange_m + SV_clock_bias_s * GPS_C_m_s;
 | |
|                                     d_visible_satellites_IDs[valid_obs] = gps_cnav_ephemeris_iter->second.i_satellite_PRN;
 | |
|                                     d_visible_satellites_CN0_dB[valid_obs] = gnss_observables_iter->second.CN0_dB_hz;
 | |
|                                     valid_obs++;
 | |
|                                     GPS_week = gps_cnav_ephemeris_iter->second.i_GPS_week;
 | |
| 
 | |
|                                     // SV ECEF DEBUG OUTPUT
 | |
|                                     DLOG(INFO) << "(new)ECEF satellite SV ID=" << gps_cnav_ephemeris_iter->second.i_satellite_PRN
 | |
|                                             << " X=" << gps_cnav_ephemeris_iter->second.d_satpos_X
 | |
|                                             << " [m] Y=" << gps_cnav_ephemeris_iter->second.d_satpos_Y
 | |
|                                             << " [m] Z=" << gps_cnav_ephemeris_iter->second.d_satpos_Z
 | |
|                                             << " [m] PR_obs=" << obs(obs_counter) << " [m]";
 | |
|                                 }
 | |
|                             else // the ephemeris are not available for this SV
 | |
|                                 {
 | |
|                                     // no valid pseudorange for the current SV
 | |
|                                     W(obs_counter, obs_counter) = 0; // SV de-activated
 | |
|                                     obs(obs_counter) = 1;            // to avoid algorithm problems (divide by zero)
 | |
|                                     DLOG(INFO) << "No ephemeris data for SV " << gnss_observables_iter->second.PRN;
 | |
|                                 }
 | |
|                         }
 | |
|                 }
 | |
|             obs_counter++;
 | |
|         }
 | |
| 
 | |
|     // ********************************************************************************
 | |
|     // ****** SOLVE LEAST SQUARES******************************************************
 | |
|     // ********************************************************************************
 | |
|     d_valid_observations = valid_obs;
 | |
| 
 | |
|     LOG(INFO) << "HYBRID PVT: valid observations=" << valid_obs;
 | |
| 
 | |
|     if(valid_obs >= 4)
 | |
|         {
 | |
|             arma::vec mypos;
 | |
|             DLOG(INFO) << "satpos=" << satpos;
 | |
|             DLOG(INFO) << "obs=" << obs;
 | |
|             DLOG(INFO) << "W=" << W;
 | |
| 
 | |
|             mypos = leastSquarePos(satpos, obs, W);
 | |
|             d_rx_dt_m = mypos(3) / GPS_C_m_s; // Convert RX time offset from meters to seconds
 | |
|             double secondsperweek = 604800.0;
 | |
|             // Compute GST and Gregorian time
 | |
|             if( GST != 0.0)
 | |
|                 {
 | |
|                     utc = galileo_utc_model.GST_to_UTC_time(GST, Galileo_week_number);
 | |
|                 }
 | |
|             else
 | |
|                 {
 | |
|                     utc = gps_utc_model.utc_time(TX_time_corrected_s, GPS_week) + secondsperweek * static_cast<double>(GPS_week);
 | |
|                 }
 | |
| 
 | |
|             // get time string Gregorian calendar
 | |
|             boost::posix_time::time_duration t = boost::posix_time::seconds(utc);
 | |
|             // 22 August 1999 00:00 last Galileo start GST epoch (ICD sec 5.1.2)
 | |
|             boost::posix_time::ptime p_time(boost::gregorian::date(1999, 8, 22), t);
 | |
|             d_position_UTC_time = p_time;
 | |
| 
 | |
|             DLOG(INFO) << "HYBRID Position at TOW=" << hybrid_current_time << " in ECEF (X,Y,Z) = " << mypos;
 | |
| 
 | |
|             cart2geo(static_cast<double>(mypos(0)), static_cast<double>(mypos(1)), static_cast<double>(mypos(2)), 4);
 | |
|             //ToDo: Find an Observables/PVT random bug with some satellite configurations that gives an erratic PVT solution (i.e. height>50 km)
 | |
|             if (d_height_m > 50000)
 | |
|                 {
 | |
|                     b_valid_position = false;
 | |
|                     LOG(INFO) << "Hybrid Position at " << boost::posix_time::to_simple_string(p_time)
 | |
|                     << " is Lat = " << d_latitude_d << " [deg], Long = " << d_longitude_d
 | |
|                     << " [deg], Height= " << d_height_m << " [m]" << " RX time offset= " << mypos(3) << " [s]";
 | |
|                     return false;
 | |
|                 }
 | |
| 
 | |
|             LOG(INFO) << "Hybrid Position at " << boost::posix_time::to_simple_string(p_time)
 | |
|             << " is Lat = " << d_latitude_d << " [deg], Long = " << d_longitude_d
 | |
|             << " [deg], Height= " << d_height_m << " [m]" << " RX time offset= " << d_rx_dt_m << " [s]";
 | |
| 
 | |
|             // ###### Compute DOPs ########
 | |
|             hybrid_ls_pvt::compute_DOP();
 | |
| 
 | |
|             // ######## LOG FILE #########
 | |
|             if(d_flag_dump_enabled == true)
 | |
|                 {
 | |
|                     // MULTIPLEXED FILE RECORDING - Record results to file
 | |
|                     try
 | |
|                     {
 | |
|                             double tmp_double;
 | |
|                             //  PVT GPS time
 | |
|                             tmp_double = hybrid_current_time;
 | |
|                             d_dump_file.write((char*)&tmp_double, sizeof(double));
 | |
|                             // ECEF User Position East [m]
 | |
|                             tmp_double = mypos(0);
 | |
|                             d_dump_file.write((char*)&tmp_double, sizeof(double));
 | |
|                             // ECEF User Position North [m]
 | |
|                             tmp_double = mypos(1);
 | |
|                             d_dump_file.write((char*)&tmp_double, sizeof(double));
 | |
|                             // ECEF User Position Up [m]
 | |
|                             tmp_double = mypos(2);
 | |
|                             d_dump_file.write((char*)&tmp_double, sizeof(double));
 | |
|                             // User clock offset [s]
 | |
|                             tmp_double = mypos(3);
 | |
|                             d_dump_file.write((char*)&tmp_double, sizeof(double));
 | |
|                             // GEO user position Latitude [deg]
 | |
|                             tmp_double = d_latitude_d;
 | |
|                             d_dump_file.write((char*)&tmp_double, sizeof(double));
 | |
|                             // GEO user position Longitude [deg]
 | |
|                             tmp_double = d_longitude_d;
 | |
|                             d_dump_file.write((char*)&tmp_double, sizeof(double));
 | |
|                             // GEO user position Height [m]
 | |
|                             tmp_double = d_height_m;
 | |
|                             d_dump_file.write((char*)&tmp_double, sizeof(double));
 | |
|                     }
 | |
|                     catch (const std::ifstream::failure& e)
 | |
|                     {
 | |
|                             LOG(WARNING) << "Exception writing PVT LS dump file " << e.what();
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|             // MOVING AVERAGE PVT
 | |
|             pos_averaging(flag_averaging);
 | |
|         }
 | |
|     else
 | |
|         {
 | |
|             b_valid_position = false;
 | |
|         }
 | |
|     return b_valid_position;
 | |
| }
 | 
