1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-12-16 21:20:34 +00:00
gnss-sdr/src/algorithms/telemetry_decoder/libs/convolutional.h
2015-01-08 19:49:59 +01:00

662 lines
22 KiB
C

/*!
* \file convolutional.h
* \brief General functions used to implement convolutional encoding.
* \author Matthew C. Valenti
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2006-2008 Matthew C. Valenti
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is a derived work of the original file, which had this note:
*
* Last updated on May 22, 2008
*
* The functions in this file are part of the Iterative Solutions
* Coded Modulation Library. The Iterative Solutions Coded Modulation
* Library is free software; you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation; either version 2.1 of the License,
* or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
//#ifndef GNSS_SDR_CONVOLUTIONAL_H_
//#define GNSS_SDR_CONVOLUTIONAL_H_
/* define constants used throughout the library */
#define MAXLOG 1e7 /* Define infinity */
/*!
* \brief Converts an integer symbol into a vector of bits
*
* \param[out] binvec_p The binary vector
* \param[in] symbol The integer-valued symbol
* \param[in] length The length of the binary vector
*
* This function is used by conv_encode()
*/
static void itob(int binvec_p[], int symbol, int length)
{
int counter;
/* Go through each bit in the vector */
for (counter = 0; counter < length; counter++)
{
binvec_p[length - counter - 1] = (symbol & 1);
symbol = symbol >> 1;
}
return;
}
/*!
* \brief Determines if a symbol has odd (1) or even (0) parity
* Output parameters:
* \return (returned int): The symbol's parity = 1 for odd and 0 for even
*
* \param[in] symbol The integer-valued symbol
* \param[in] length The highest bit position in the symbol
*
* This function is used by nsc_enc_bit(), rsc_enc_bit(), and rsc_tail()
*/
static int parity_counter(int symbol, int length)
{
int counter;
int temp_parity = 0;
for (counter = 0; counter < length; counter++)
{
temp_parity = temp_parity^(symbol & 1);
symbol = symbol >> 1;
}
return(temp_parity);
}
/*!
* \brief Convolutionally encodes a single bit using a rate 1/n encoder.
* Takes in one input bit at a time, and produces a n-bit output.
*
* \param[in] input The input data bit (i.e. a 0 or 1).
* \param[in] state_in The starting state of the encoder (an int from 0 to 2^m-1).
* \param[in] g[] An n-element vector containing the code generators in binary form.
* \param[in] KK The constraint length of the convolutional code.
* \param[out] output_p[] An n-element vector containing the encoded bits.
* \param[out] state_out_p[] An integer containing the final state of the encoder
* (i.e. the state after encoding this bit)
*
* This function is used by rsc_encode(), nsc_transit(), rsc_transit(), and nsc_transit()
*/
static int nsc_enc_bit(int state_out_p[],
int input,
int state_in,
int g[],
int KK,
int nn)
{
/* declare variables */
int state, i;
int out_ = 0;
/* create a word made up of state and new input */
state = (input << (KK - 1))^state_in;
/* AND the word with the generators */
for (i = 0; i < nn; i++)
{
/* update output symbol */
out_ = (out_ << 1) + parity_counter(state & g[i], KK);
}
/* shift the state to make the new state */
state_out_p[0] = state >> 1;
return(out_);
}
/*!
* \brief like nsc_enc_bit() but for a RSC code
*/
static int rsc_enc_bit(int state_out_p[],
int input,
int state_in,
int g[],
int KK,
int nn)
{
/* declare variables */
int state, i, out_, a_k;
/* systematic output */
out_ = input;
/* determine feedback bit */
a_k = input^parity_counter(g[0]&state_in, KK);
/* create a word made up of state and feedback bit */
state = (a_k << (KK - 1))^state_in;
/* AND the word with the generators */
for (i = 1; i < nn; i++)
{
/* update output symbol */
out_ = (out_ << 1) + parity_counter(state & g[i], KK);
}
/* shift the state to make the new state */
state_out_p[0] = state >> 1;
return(out_);
}
/*!
* \brief Function that creates the transit and output vectors
*/
static void nsc_transit(int output_p[],
int trans_p[],
int input,
int g[],
int KK,
int nn)
{
int nextstate[1];
int state, states;
states = (1 << (KK - 1)); /* The number of states: 2^mm */
/* Determine the output and next state for each possible starting state */
for(state = 0; state < states; state++)
{
output_p[state] = nsc_enc_bit(nextstate, input, state, g, KK, nn);
trans_p[state] = nextstate[0];
}
return;
}
/*!
* \brief Calculates the "transition matrix" for the trellis.
* This information tells the decoder what the next state and output bits
* will be given the current state and input bit.
*
* \param[in] input Either 0 or 1 --- the input data bit.
* \param[in] g[] A two element vector containing the code generators.
* \param[in] KK The constraint length of the convolutional code.
* \param[out] output_p[] A vector of length max_states = 2^(KK-1) containing
* the output symbols.
* \param[out] trans_p[] A vector of length max_states that tells the decoder
* what the next state will be given the input and current state.
*
* This function is used by turbo_decode()
*/
static void rsc_transit(int output_p[],
int trans_p[],
int input,
int g[],
int KK,
int nn )
{
int nextstate[1];
int state, states;
states = 1 << (KK - 1); // The number of states: 2^mm
// Determine the output and next state for each possible starting state
for(state = 0; state < states; state++)
{
output_p[state] = rsc_enc_bit( nextstate, input, state, g, KK, nn );
trans_p[state] = nextstate[0];
}
return;
}
/*!
* \brief determines the tail for a RSC code
*/
static void rsc_tail(int tail_p[],
int g[],
int max_states,
int mm )
{
int state;
/* Determine the tail for each state */
for(state = 0; state < max_states; state++)
{
/* determine feedback word */
tail_p[state] = parity_counter(g[0]&state, mm);
}
return;
}
/*!
* \brief Perform convolutional encoding
*/
static void conv_encode(int output_p[],
int input[],
int out0[],
int state0[],
int out1[],
int state1[],
int tail[],
int KK,
int LL,
int nn)
{
int i, j, outsym;
int *bin_vec;
int state = 0;
/* Negative value in "tail" is a flag that this is
a tail-biting NSC code. Determine initial state */
if ( tail[0] < 0 )
{
for (i = LL - KK + 1; i < LL; i++)
{
if (input[i])
{
/* Determine next state */
state = state1[state];
}
else
{
/* Determine next state */
state = state0[state];
}
}
}
bin_vec = (int*)calloc( nn, sizeof(int) );
/* encode data bits one bit at a time */
for (i = 0; i < LL; i++)
{
if (input[i])
{
/* Input is a one */
outsym = out1[state]; /* The output symbol */
/* Determine next state */
state = state1[state];
}
else
{
/* Input is a zero */
outsym = out0[state]; /* The output symbol */
/* Determine next state */
state = state0[state];
}
/* Convert symbol to a binary vector */
itob( bin_vec, outsym, nn );
/* Assign to output */
for (j = 0; j < nn; j++)
output_p[nn*i + j] = bin_vec[j];
}
/* encode tail if needed */
if (tail[0] >= 0)
{
for (i = LL; i < LL + KK - 1; i++)
{
if (tail[state])
{
/* Input is a one */
outsym = out1[state]; /* The output symbol */
/* Determine next state */
state = state1[state];
}
else
{
/* Input is a zero */
outsym = out0[state]; /* The output symbol */
/* Determine next state */
state = state0[state];
}
/* Convert symbol to a binary vector */
itob( bin_vec, outsym, nn );
/* Assign to output */
for (j = 0; j < nn; j++)
output_p[nn*i + j] = bin_vec[j];
}
}
free(bin_vec);
return;
}
/*!
* \brief Computes the branch metric used for decoding.
* \return (returned float) The metric between the hypothetical symbol and the received vector
* \param[in] rec_array The received vector, of length nn
* \param[in] symbol The hypothetical symbol
* \param[in] nn The length of the received vector
*
* This function is used by siso()
*/
static float Gamma(float rec_array[],
int symbol,
int nn)
{
float rm = 0;
int i;
int mask = 1;
for (i = 0; i < nn; i++)
{
if (symbol & mask)
rm += rec_array[nn - i - 1];
mask = mask << 1;
}
return(rm);
}
/*!
* \brief Uses the Viterbi algorithm to perform hard-decision decoding of a convolutional code.
* \param[in] out0[] The output bits for each state if input is a 0 (generated by rsc_transit).
* \param[in] state0[] The next state if input is a 0 (generated by rsc_transit).
* \param[in] out1[] The output bits for each state if input is a 1 (generated by rsc_transit).
* \param[in] state1[] The next state if input is a 1 (generated by rsc_transit).
* \param[in] r[] The received signal in LLR-form. For BPSK, must be in form r = 2*a*y/(sigma^2).
* \param[in] KK The constraint length of the convolutional code.
* \param[in] LL The number of data bits.
* \param[out] output_u_int[] Hard decisions on the data bits
*
*/
static void Viterbi(int output_u_int[],
int out0[],
int state0[],
int out1[],
int state1[],
double input_c[],
int KK,
int nn,
int LL)
{
int i, t, state, mm, states;
int number_symbols;
float metric;
float *prev_section, *next_section;
int *prev_bit;
int *prev_state;
float *metric_c; /* Set of all possible branch metrics */
float *rec_array; /* Received values for one trellis section */
float max_val;
/* some derived constants */
mm = KK - 1;
states = 1 << mm; /* 2^mm */
number_symbols = 1 << nn; /* 2^nn */
/* dynamically allocate memory */
prev_section = (float*)calloc( states, sizeof(float) );
next_section = (float*)calloc( states, sizeof(float) );
prev_bit = (int*)calloc( states*(LL + mm), sizeof(int) );
prev_state = (int*)calloc( states*(LL + mm), sizeof(int) );
rec_array = (float*)calloc( nn, sizeof(float) );
metric_c = (float*)calloc( number_symbols, sizeof(float) );
/* initialize trellis */
for (state = 0; state < states; state++)
{
prev_section[state] = -MAXLOG;
next_section[state] = -MAXLOG;
}
prev_section[0] = 0; /* start in all-zeros state */
/* go through trellis */
for (t = 0; t < LL + mm; t++)
{
for (i = 0; i < nn; i++)
rec_array[i] = (float)input_c[nn*t + i];
/* precompute all possible branch metrics */
for (i = 0; i < number_symbols; i++)
metric_c[i] = Gamma( rec_array, i, nn );
/* step through all states */
for (state = 0; state < states; state++)
{
/* hypothesis: info bit is a zero */
metric = prev_section[state] + metric_c[ out0[ state ] ];
/* store new metric if more than metric in storage */
if ( metric > next_section[state0[state]] )
{
next_section[state0[state]] = metric;
prev_state[t*states + state0[state]] = state;
prev_bit[t*states + state0[state]] = 0;
}
/* hypothesis: info bit is a one */
metric = prev_section[state] + metric_c[ out1[ state ] ];
/* store new metric if more than metric in storage */
if ( metric > next_section[state1[state]] )
{
next_section[state1[state]] = metric;
prev_state[t*states + state1[state]] = state;
prev_bit[t*states + state1[state]] = 1;
}
}
/* normalize */
max_val = 0;
for (state = 0; state < states; state++)
{
if (next_section[state] > max_val)
{
max_val = next_section[state];
}
}
for (state = 0; state < states; state++)
{
prev_section[state] = next_section[state] - max_val;
next_section[state] = -MAXLOG;
}
}
/* trace-back operation */
state = 0;
/* tail, no need to output */
for (t = LL + mm - 1; t >= LL; t--)
{
state = prev_state[t*states + state];
}
for (t = LL - 1; t >= 0; t--)
{
output_u_int[t] = prev_bit[t*states + state];
state = prev_state[t*states + state];
}
/* free the dynamically allocated memory */
free(prev_section);
free(next_section);
free(prev_bit);
free(prev_state);
free(rec_array);
free(metric_c);
}
/*!
* \brief Uses the Viterbi algorithm to perform hard-decision decoding of a tail-biting convolutional code.
* Input parameters:
* out0[] The output bits for each state if input is a 0 (generated by rsc_transit).
* state0[] The next state if input is a 0 (generated by rsc_transit).
* out1[] The output bits for each state if input is a 1 (generated by rsc_transit).
* state1[] The next state if input is a 1 (generated by rsc_transit).
* r[] The received signal in LLR-form. For BPSK, must be in form r = 2*a*y/(sigma^2).
* KK The constraint length of the convolutional code.
* LL The number of data bits.
* depth head and tail decoding length [Ref. W. Sung, Electronics Letters, vol. 36, no. 7]
* Output parameters:
* output_u_int[] Hard decisions on the data bits
*/
static void ViterbiTb(int output_u_int[],
int out0[],
int state0[],
int out1[],
int state1[],
double input_c[],
int KK,
int nn,
int LL,
int depth)
{
int i, t, state, mm, states, max_state;
int number_symbols, starting_bit;
float metric;
float *prev_section, *next_section;
int *prev_bit;
int *prev_state;
float *metric_c; /* Set of all possible branch metrics */
float *rec_array; /* Received values for one trellis section */
float max_val;
/* some derived constants */
mm = KK - 1;
states = 1 << mm; /* 2^mm */
number_symbols = 1 << nn; /* 2^nn */
/* dynamically allocate memory */
prev_section = (float*)calloc( states, sizeof(float) );
next_section = (float*)calloc( states, sizeof(float) );
prev_bit = (int*)calloc( states*(LL + depth), sizeof(int) );
prev_state = (int*)calloc( states*(LL + depth), sizeof(int) );
rec_array = (float*)calloc( nn, sizeof(float) );
metric_c = (float*)calloc( number_symbols, sizeof(float) );
/* initialize trellis */
for (state = 0; state < states; state++)
{
prev_section[state] = 0; /* equally likely starting state */
next_section[state] = -MAXLOG;
}
/* go through trellis */
for (t = -depth; t < LL + depth; t++)
{
/* determine the corresponding data bits */
starting_bit = nn*(t % LL);
if (starting_bit < 0 )
starting_bit = nn*LL + starting_bit;
for (i = 0; i < nn; i++)
{
rec_array[i] = (float)input_c[starting_bit+i];
}
/* precompute all possible branch metrics */
for (i = 0; i < number_symbols; i++)
metric_c[i] = Gamma( rec_array, i, nn );
/* step through all states */
for (state = 0; state < states; state++)
{
/* hypothesis: info bit is a zero */
metric = prev_section[state] + metric_c[ out0[ state ] ];
/* store new metric if more than metric in storage */
if ( metric > next_section[state0[state]] )
{
next_section[state0[state]] = metric;
if (t >= 0)
{
prev_state[t*states+state0[state]] = state;
prev_bit[t*states+state0[state]] = 0;
}
}
/* hypothesis: info bit is a one */
metric = prev_section[state] + metric_c[ out1[ state ] ];
/* store new metric if more than metric in storage */
if ( metric > next_section[state1[state]] )
{
next_section[state1[state]] = metric;
if (t >= 0)
{
prev_state[t*states+state1[state]] = state;
prev_bit[t*states+state1[state]] = 1;
}
}
}
/* normalize */
max_val = 0;
for (state = 0; state < states; state++)
{
if (next_section[state] > max_val)
{
max_val = next_section[state];
max_state = state;
}
}
for (state = 0; state < states; state++)
{
prev_section[state] = next_section[state] - max_val;
next_section[state] = -MAXLOG;
}
}
/* trace-back operation */
state = max_state;
/* tail, no need to output */
for (t = LL + depth - 1; t >= LL; t--)
{
state = prev_state[t*states + state];
}
for (t = LL - 1; t >= 0; t--)
{
output_u_int[t] = prev_bit[t*states + state];
state = prev_state[t*states + state];
}
/* free the dynamically allocated memory */
free(prev_section);
free(next_section);
free(prev_bit);
free(prev_state);
free(rec_array);
free(metric_c);
}
//#endif