1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-01-15 11:45:47 +00:00
gnss-sdr/conf/gnss-sdr_multisource_Hybrid_short.conf
2015-03-04 19:00:57 +01:00

480 lines
19 KiB
Plaintext

; Default configuration file
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
[GNSS-SDR]
;######### GLOBAL OPTIONS ##################
;internal_fs_hz: Internal signal sampling frequency after the signal conditioning stage [Hz].
GNSS-SDR.internal_fs_hz=4000000
Receiver.sources_count=2
;#enable_throttle_control: Enabling this option tells the signal source to keep the delay between samples in post processing.
; it helps to not overload the CPU, but the processing time will be longer.
SignalSource.enable_throttle_control=false
;#repeat: Repeat the processing file. Disable this option in this version
SignalSource.repeat=false
;######### CONTROL_THREAD CONFIG ############
ControlThread.wait_for_flowgraph=false
;######### SIGNAL_SOURCE 0 CONFIG ############
;#implementation: Use [File_Signal_Source] or [UHD_Signal_Source] or [GN3S_Signal_Source] (experimental)
SignalSource0.implementation=File_Signal_Source
;#filename: path to file with the captured GNSS signal samples to be processed
SignalSource0.filename=../data/2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN.dat
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
SignalSource0.item_type=short
;#sampling_frequency: Original Signal sampling frequency in [Hz]
SignalSource0.sampling_frequency=4000000
;#freq: RF front-end center frequency in [Hz]
SignalSource0.freq=1575420000
;#gain: Front-end Gain in [dB]
SignalSource0.gain=60
;#subdevice: UHD subdevice specification (for USRP1 use A:0 or B:0)
SignalSource0.subdevice=B:0
;#samples: Number of samples to be processed. Notice that 0 indicates the entire file.
SignalSource0.samples=0
;#dump: Dump the Signal source data to a file. Disable this option in this version
SignalSource0.dump=false
SignalSource0.dump_filename=../data/signal_source.dat
;######### SIGNAL_SOURCE 1 CONFIG ############
;#implementation: Use [File_Signal_Source] or [UHD_Signal_Source] or [GN3S_Signal_Source] (experimental)
SignalSource1.implementation=File_Signal_Source
;#filename: path to file with the captured GNSS signal samples to be processed
SignalSource1.filename=../data/2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN.dat
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
SignalSource1.item_type=short
;#sampling_frequency: Original Signal sampling frequency in [Hz]
SignalSource1.sampling_frequency=4000000
;#freq: RF front-end center frequency in [Hz]
SignalSource1.freq=1575420000
;#gain: Front-end Gain in [dB]
SignalSource1.gain=60
;#subdevice: UHD subdevice specification (for USRP1 use A:0 or B:0)
SignalSource1.subdevice=B:0
;#samples: Number of samples to be processed. Notice that 0 indicates the entire file.
SignalSource1.samples=0
;#dump: Dump the Signal source data to a file. Disable this option in this version
SignalSource1.dump=false
SignalSource1.dump_filename=../data/signal_source.dat
;######### SIGNAL_CONDITIONER 0 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
SignalConditioner0.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER 0 CONFIG ############
;## Changes the type of input data. Please disable it in this version.
;#implementation: [Pass_Through] disables this block
DataTypeAdapter0.implementation=Ishort_To_Complex
;######### INPUT_FILTER 0 CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
InputFilter0.implementation=Pass_Through
;#dump: Dump the filtered data to a file.
InputFilter0.dump=false
;#dump_filename: Log path and filename.
InputFilter0.dump_filename=../data/input_filter.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#These function calculates the optimal (in the Chebyshev/minimax sense) FIR filter inpulse reponse given a set of band edges, the desired reponse on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples. Use only gr_complex in this version.
InputFilter0.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples. Use only gr_complex in this version.
InputFilter0.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter0.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter0.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter0.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter0.band1_begin=0.0
InputFilter0.band1_end=0.45
InputFilter0.band2_begin=0.55
InputFilter0.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter0.ampl1_begin=1.0
InputFilter0.ampl1_end=1.0
InputFilter0.ampl2_begin=0.0
InputFilter0.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter0.band1_error=1.0
InputFilter0.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter0.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter0.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter0.IF is the intermediate frequency (in Hz) shifted down to zero Hz
InputFilter0.sampling_frequency=4000000
InputFilter0.IF=0
;######### RESAMPLER 1 CONFIG ############
;## Resamples the input data.
;#implementation: Use [Pass_Through] or [Direct_Resampler]
;#[Pass_Through] disables this block
;#[Direct_Resampler] enables a resampler that implements a nearest neigbourhood interpolation
Resampler1.implementation=Pass_Through
;#dump: Dump the resamplered data to a file.
Resampler1.dump=false
;#dump_filename: Log path and filename.
Resampler1.dump_filename=../data/resampler.dat
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
Resampler1.item_type=gr_complex
;#sample_freq_in: the sample frequency of the input signal
Resampler1.sample_freq_in=4000000
;#sample_freq_out: the desired sample frequency of the output signal
Resampler1.sample_freq_out=4000000
;######### SIGNAL_CONDITIONER 1 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
SignalConditioner1.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER 1 CONFIG ############
;## Changes the type of input data. Please disable it in this version.
;#implementation: [Pass_Through] disables this block
DataTypeAdapter1.implementation=Ishort_To_Complex
;######### INPUT_FILTER 1 CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
InputFilter1.implementation=Pass_Through
;#dump: Dump the filtered data to a file.
InputFilter1.dump=false
;#dump_filename: Log path and filename.
InputFilter1.dump_filename=../data/input_filter.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#These function calculates the optimal (in the Chebyshev/minimax sense) FIR filter inpulse reponse given a set of band edges, the desired reponse on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples. Use only gr_complex in this version.
InputFilter1.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples. Use only gr_complex in this version.
InputFilter1.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter1.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter1.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter1.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter1.band1_begin=0.0
InputFilter1.band1_end=0.45
InputFilter1.band2_begin=0.55
InputFilter1.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter1.ampl1_begin=1.0
InputFilter1.ampl1_end=1.0
InputFilter1.ampl2_begin=0.0
InputFilter1.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter1.band1_error=1.0
InputFilter1.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter1.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter1.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter1.IF is the intermediate frequency (in Hz) shifted down to zero Hz
InputFilter1.sampling_frequency=4000000
InputFilter1.IF=0
;######### RESAMPLER 1 CONFIG ############
;## Resamples the input data.
;#implementation: Use [Pass_Through] or [Direct_Resampler]
;#[Pass_Through] disables this block
;#[Direct_Resampler] enables a resampler that implements a nearest neigbourhood interpolation
Resampler1.implementation=Pass_Through
;#dump: Dump the resamplered data to a file.
Resampler1.dump=false
;#dump_filename: Log path and filename.
Resampler1.dump_filename=../data/resampler.dat
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
Resampler1.item_type=gr_complex
;#sample_freq_in: the sample frequency of the input signal
Resampler1.sample_freq_in=4000000
;#sample_freq_out: the desired sample frequency of the output signal
Resampler1.sample_freq_out=4000000
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
Channels_GPS.count=2
;#count: Number of available Galileo satellite channels.
Channels_Galileo.count=2
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
Channels.in_acquisition=1
;#system: GPS, GLONASS, GALILEO, SBAS or COMPASS
;#if the option is disabled by default is assigned GPS
Channel.system=GPS, Galileo
;# CHANNEL CONNECTION
Channel0.RF_channel_ID=0
Channel1.RF_channel_ID=0
Channel2.RF_channel_ID=1
Channel3.RF_channel_ID=1
;#signal:
;#if the option is disabled by default is assigned "1C" GPS L1 C/A
Channel.signal=1B
;######### GPS ACQUISITION CONFIG ############
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_GPS.dump=false
;#filename: Log path and filename
Acquisition_GPS.dump_filename=./acq_dump.dat
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
Acquisition_GPS.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_GPS.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_GPS.sampled_ms=1
;#implementation: Acquisition algorithm selection for this channel: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition_GPS.implementation=GPS_L1_CA_PCPS_Acquisition
;#threshold: Acquisition threshold
Acquisition_GPS.threshold=0.0075
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
;Acquisition_GPS.pfa=0.01
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_GPS.doppler_max=10000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_GPS.doppler_step=500
;######### GALILEO ACQUISITION CONFIG ############
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_Galileo.dump=false
;#filename: Log path and filename
Acquisition_Galileo.dump_filename=./acq_dump.dat
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
Acquisition_Galileo.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_Galileo.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_Galileo.sampled_ms=4
;#implementation: Acquisition algorithm selection for this channel: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition_Galileo.implementation=Galileo_E1_PCPS_Ambiguous_Acquisition
;#threshold: Acquisition threshold
;Acquisition_Galileo.threshold=0
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition_Galileo.pfa=0.0000008
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_Galileo.doppler_max=15000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_Galileo.doppler_step=125
;######### TRACKING GPS CONFIG ############
;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_FLL_PLL_Tracking] or [GPS_L1_CA_TCP_CONNECTOR_Tracking] or [Galileo_E1_DLL_PLL_VEML_Tracking]
Tracking_GPS.implementation=GPS_L1_CA_DLL_PLL_Tracking
;#item_type: Type and resolution for each of the signal samples. Use only [gr_complex] in this version.
Tracking_GPS.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_GPS.if=0
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_GPS.dump=false
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_GPS.dump_filename=../data/epl_tracking_ch_
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_GPS.pll_bw_hz=45.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_GPS.dll_bw_hz=4.0;
;#fll_bw_hz: FLL loop filter bandwidth [Hz]
Tracking_GPS.fll_bw_hz=10.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_GPS.order=3;
;######### TRACKING GALILEO CONFIG ############
;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_FLL_PLL_Tracking] or [GPS_L1_CA_TCP_CONNECTOR_Tracking] or [Galileo_E1_DLL_PLL_VEML_Tracking]
Tracking_Galileo.implementation=Galileo_E1_DLL_PLL_VEML_Tracking
;#item_type: Type and resolution for each of the signal samples. Use only [gr_complex] in this version.
Tracking_Galileo.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_Galileo.if=0
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_Galileo.dump=false
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_Galileo.dump_filename=../data/veml_tracking_ch_
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_Galileo.pll_bw_hz=15.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_Galileo.dll_bw_hz=2.0;
;#fll_bw_hz: FLL loop filter bandwidth [Hz]
Tracking_Galileo.fll_bw_hz=10.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_Galileo.order=3;
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5] for GPS and [0.15] for Galileo
Tracking_Galileo.early_late_space_chips=0.15;
;#very_early_late_space_chips: only for [Galileo_E1_DLL_PLL_VEML_Tracking], correlator very early-late space [chips]. Use [0.6]
Tracking_Galileo.very_early_late_space_chips=0.6;
;######### TELEMETRY DECODER GPS CONFIG ############
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A
TelemetryDecoder_GPS.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_GPS.dump=false
;#decimation factor
TelemetryDecoder_GPS.decimation_factor=4;
;######### TELEMETRY DECODER GALILEO CONFIG ############
;#implementation: Use [Galileo_E1B_Telemetry_Decoder] for Galileo E1B
TelemetryDecoder_Galileo.implementation=Galileo_E1B_Telemetry_Decoder
TelemetryDecoder_Galileo.dump=false
;######### OBSERVABLES CONFIG ############
;#implementation: Use [GPS_L1_CA_Observables] for GPS L1 C/A.
Observables.implementation=Hybrid_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=false
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
;######### PVT CONFIG ############
;#implementation: Position Velocity and Time (PVT) implementation algorithm: Use [GPS_L1_CA_PVT] in this version.
PVT.implementation=Hybrid_PVT
;#averaging_depth: Number of PVT observations in the moving average algorithm
PVT.averaging_depth=10
;#flag_average: Enables the PVT averaging between output intervals (arithmetic mean) [true] or [false]
PVT.flag_averaging=false
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
PVT.output_rate_ms=100;
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
PVT.display_rate_ms=500;
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
PVT.dump=false
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
PVT.dump_filename=./PVT
;######### OUTPUT_FILTER CONFIG ############
;# Receiver output filter: Leave this block disabled in this version
OutputFilter.implementation=Null_Sink_Output_Filter
OutputFilter.filename=data/gnss-sdr.dat
OutputFilter.item_type=gr_complex