1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-11-10 20:10:05 +00:00
gnss-sdr/src/algorithms/PVT/libs/ls_pvt.cc
Carles Fernandez 62a7e54359
Introduce readability-identifier-naming check
This commit enforces naming style for Classes and global constants:
Camel_Snake_Case for Classes
UPPER_CASE for global constants
CamelCase for abstract classes
2019-02-22 10:47:24 +01:00

293 lines
12 KiB
C++

/*!
* \file ls_pvt.cc
* \brief Implementation of a base class for Least Squares PVT solutions
* \author Carles Fernandez-Prades, 2015. cfernandez(at)cttc.es
*
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "ls_pvt.h"
#include "GPS_L1_CA.h"
#include "geofunctions.h"
#include <glog/logging.h>
#include <exception>
#include <stdexcept>
using google::LogMessage;
Ls_Pvt::Ls_Pvt() : Pvt_Solution()
{
}
arma::vec Ls_Pvt::bancroftPos(const arma::mat& satpos, const arma::vec& obs)
{
// BANCROFT Calculation of preliminary coordinates for a GPS receiver based on pseudoranges
// to 4 or more satellites. The ECEF coordinates are stored in satpos.
// The observed pseudoranges are stored in obs
// Reference: Bancroft, S. (1985) An Algebraic Solution of the GPS Equations,
// IEEE Trans. Aerosp. and Elec. Systems, AES-21, Issue 1, pp. 56--59
// Based on code by:
// Kai Borre 04-30-95, improved by C.C. Goad 11-24-96
//
// Test values to use in debugging
// B_pass =[ -11716227.778 -10118754.628 21741083.973 22163882.029;
// -12082643.974 -20428242.179 11741374.154 21492579.823;
// 14373286.650 -10448439.349 19596404.858 21492492.771;
// 10278432.244 -21116508.618 -12689101.970 25284588.982 ];
// Solution: 595025.053 -4856501.221 4078329.981
//
// Test values to use in debugging
// B_pass = [14177509.188 -18814750.650 12243944.449 21119263.116;
// 15097198.146 -4636098.555 21326705.426 22527063.486;
// 23460341.997 -9433577.991 8174873.599 23674159.579;
// -8206498.071 -18217989.839 17605227.065 20951643.862;
// 1399135.830 -17563786.820 19705534.862 20155386.649;
// 6995655.459 -23537808.269 -9927906.485 24222112.972 ];
// Solution: 596902.683 -4847843.316 4088216.740
arma::vec pos = arma::zeros(4, 1);
arma::mat B_pass = arma::zeros(obs.size(), 4);
B_pass.submat(0, 0, obs.size() - 1, 2) = satpos;
B_pass.col(3) = obs;
arma::mat B;
arma::mat BBB;
double traveltime = 0;
for (int iter = 0; iter < 2; iter++)
{
B = B_pass;
int m = arma::size(B, 0);
for (int i = 0; i < m; i++)
{
int x = B(i, 0);
int y = B(i, 1);
if (iter == 0)
{
traveltime = 0.072;
}
else
{
int z = B(i, 2);
double rho = (x - pos(0)) * (x - pos(0)) + (y - pos(1)) * (y - pos(1)) + (z - pos(2)) * (z - pos(2));
traveltime = sqrt(rho) / GPS_C_M_S;
}
double angle = traveltime * 7.292115147e-5;
double cosa = cos(angle);
double sina = sin(angle);
B(i, 0) = cosa * x + sina * y;
B(i, 1) = -sina * x + cosa * y;
} // % i-loop
if (m > 3)
{
BBB = arma::inv(B.t() * B) * B.t();
}
else
{
BBB = arma::inv(B);
}
arma::vec e = arma::ones(m, 1);
arma::vec alpha = arma::zeros(m, 1);
for (int i = 0; i < m; i++)
{
alpha(i) = lorentz(B.row(i).t(), B.row(i).t()) / 2.0;
}
arma::mat BBBe = BBB * e;
arma::mat BBBalpha = BBB * alpha;
double a = lorentz(BBBe, BBBe);
double b = lorentz(BBBe, BBBalpha) - 1;
double c = lorentz(BBBalpha, BBBalpha);
double root = sqrt(b * b - a * c);
arma::vec r = {(-b - root) / a, (-b + root) / a};
arma::mat possible_pos = arma::zeros(4, 2);
for (int i = 0; i < 2; i++)
{
possible_pos.col(i) = r(i) * BBBe + BBBalpha;
possible_pos(3, i) = -possible_pos(3, i);
}
arma::vec abs_omc = arma::zeros(2, 1);
for (int j = 0; j < m; j++)
{
for (int i = 0; i < 2; i++)
{
double c_dt = possible_pos(3, i);
double calc = arma::norm(satpos.row(i).t() - possible_pos.col(i).rows(0, 2)) + c_dt;
double omc = obs(j) - calc;
abs_omc(i) = std::abs(omc);
}
} // % j-loop
// discrimination between roots
if (abs_omc(0) > abs_omc(1))
{
pos = possible_pos.col(1);
}
else
{
pos = possible_pos.col(0);
}
} // % iter loop
return pos;
}
double Ls_Pvt::lorentz(const arma::vec& x, const arma::vec& y)
{
// LORENTZ Calculates the Lorentz inner product of the two
// 4 by 1 vectors x and y
// Based on code by:
// Kai Borre 04-22-95
//
// M = diag([1 1 1 -1]);
// p = x'*M*y;
return (x(0) * y(0) + x(1) * y(1) + x(2) * y(2) - x(3) * y(3));
}
arma::vec Ls_Pvt::leastSquarePos(const arma::mat& satpos, const arma::vec& obs, const arma::vec& w_vec)
{
/* Computes the Least Squares Solution.
* Inputs:
* satpos - Satellites positions in ECEF system: [X; Y; Z;]
* obs - Observations - the pseudorange measurements to each satellite
* w - weight vector
*
* Returns:
* pos - receiver position and receiver clock error
* (in ECEF system: [X, Y, Z, dt])
*/
//=== Initialization =======================================================
int nmbOfIterations = 10; // TODO: include in config
int nmbOfSatellites;
nmbOfSatellites = satpos.n_cols; // Armadillo
arma::mat w = arma::zeros(nmbOfSatellites, nmbOfSatellites);
w.diag() = w_vec; //diagonal weight matrix
arma::vec rx_pos = this->get_rx_pos();
arma::vec pos = {rx_pos(0), rx_pos(1), rx_pos(2), 0}; // time error in METERS (time x speed)
arma::mat A;
arma::mat omc;
A = arma::zeros(nmbOfSatellites, 4);
omc = arma::zeros(nmbOfSatellites, 1);
arma::mat X = satpos;
arma::vec Rot_X;
double rho2;
double traveltime;
double trop = 0.0;
double dlambda;
double dphi;
double h;
arma::vec x;
//=== Iteratively find receiver position ===================================
for (int iter = 0; iter < nmbOfIterations; iter++)
{
for (int i = 0; i < nmbOfSatellites; i++)
{
if (iter == 0)
{
//--- Initialize variables at the first iteration --------------
Rot_X = X.col(i); //Armadillo
trop = 0.0;
}
else
{
//--- Update equations -----------------------------------------
rho2 = (X(0, i) - pos(0)) *
(X(0, i) - pos(0)) +
(X(1, i) - pos(1)) *
(X(1, i) - pos(1)) +
(X(2, i) - pos(2)) *
(X(2, i) - pos(2));
traveltime = sqrt(rho2) / GPS_C_M_S;
//--- Correct satellite position (do to earth rotation) --------
Rot_X = Ls_Pvt::rotateSatellite(traveltime, X.col(i)); //armadillo
//--- Find DOA and range of satellites
double* azim = nullptr;
double* elev = nullptr;
double* dist = nullptr;
topocent(azim, elev, dist, pos.subvec(0, 2), Rot_X - pos.subvec(0, 2));
if (traveltime < 0.1 && nmbOfSatellites > 3)
{
//--- Find receiver's height
togeod(&dphi, &dlambda, &h, 6378137.0, 298.257223563, pos(0), pos(1), pos(2));
// Add troposphere correction if the receiver is below the troposphere
if (h > 15000)
{
//receiver is above the troposphere
trop = 0.0;
}
else
{
//--- Find delay due to troposphere (in meters)
Ls_Pvt::tropo(&trop, sin(*elev * GPS_PI / 180.0), h / 1000.0, 1013.0, 293.0, 50.0, 0.0, 0.0, 0.0);
if (trop > 5.0)
{
trop = 0.0; //check for erratic values
}
}
}
}
//--- Apply the corrections ----------------------------------------
omc(i) = (obs(i) - norm(Rot_X - pos.subvec(0, 2), 2) - pos(3) - trop); // Armadillo
//--- Construct the A matrix ---------------------------------------
//Armadillo
A(i, 0) = (-(Rot_X(0) - pos(0))) / obs(i);
A(i, 1) = (-(Rot_X(1) - pos(1))) / obs(i);
A(i, 2) = (-(Rot_X(2) - pos(2))) / obs(i);
A(i, 3) = 1.0;
}
//--- Find position update ---------------------------------------------
x = arma::solve(w * A, w * omc); // Armadillo
//--- Apply position update --------------------------------------------
pos = pos + x;
if (arma::norm(x, 2) < 1e-4)
{
break; // exit the loop because we assume that the LS algorithm has converged (err < 0.1 cm)
}
}
// check the consistency of the PVT solution
if (((fabs(pos(3)) * 1000.0) / GPS_C_M_S) > GPS_STARTOFFSET_MS * 2)
{
LOG(WARNING) << "Receiver time offset out of range! Estimated RX Time error [s]:" << pos(3) / GPS_C_M_S;
throw std::runtime_error("Receiver time offset out of range!");
}
return pos;
}