1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-11-09 19:40:04 +00:00
gnss-sdr/conf/front-end-cal.conf
2018-10-23 00:16:36 +02:00

201 lines
7.8 KiB
Plaintext

; This is a GNSS-SDR configuration file
; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/
; Default configuration file
; You can define your own front-end calibration tool configuration and invoke it by doing
; ./front-end-cal --config_file=my_GNSS_SDR_configuration.conf
;
[GNSS-SDR]
;######### INITIAL RECEIVER POSITIION ######
; san francisco scenario
;GNSS-SDR.init_latitude_deg=40.74846557442795
;GNSS-SDR.init_longitude_deg=-73.98593961814200
;GNSS-SDR.init_altitude_m=329.11968943169342
; Barcelona CTTC
GNSS-SDR.init_latitude_deg=41.27719585553101
GNSS-SDR.init_longitude_deg=1.988782985790802
GNSS-SDR.init_altitude_m=10
; Mozoncillo
;GNSS-SDR.init_latitude_deg=41.14534824586196
;GNSS-SDR.init_longitude_deg=-4.187125019737464
;GNSS-SDR.init_altitude_m=900
;######### GLOBAL OPTIONS ##################
;internal_fs_sps: Internal signal sampling frequency after the signal conditioning stage [samples per second].
GNSS-SDR.internal_fs_sps=2000000
;######### SUPL RRLP GPS assistance configuration #####
; Check http://www.mcc-mnc.com/
; On Android: https://play.google.com/store/apps/details?id=net.its_here.cellidinfo&hl=en
GNSS-SDR.SUPL_gps_enabled=true
GNSS-SDR.SUPL_read_gps_assistance_xml=false
GNSS-SDR.SUPL_gps_ephemeris_server=supl.google.com
GNSS-SDR.SUPL_gps_ephemeris_port=7275
GNSS-SDR.SUPL_gps_acquisition_server=supl.google.com
GNSS-SDR.SUPL_gps_acquisition_port=7275
GNSS-SDR.SUPL_MCC=217
GNSS-SDR.SUPL_MNC=7
GNSS-SDR.SUPL_LAC=861
GNSS-SDR.SUPL_CI=40184
;######### SIGNAL_SOURCE CONFIG ############
SignalSource.implementation=Osmosdr_Signal_Source
;#freq: RF front-end center frequency in [Hz]
SignalSource.freq=1575420000
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
SignalSource.item_type=gr_complex
;#sampling_frequency: Original Signal sampling frequency in samples per second
SignalSource.sampling_frequency=2000000
;#gain: Front-end Gain in [dB]
SignalSource.gain=40
SignalSource.rf_gain=40
SignalSource.if_gain=30
SignalSource.AGC_enabled=false
;# Please note that the new RTL-SDR Blog V3 dongles ship a < 1 PPM
;# temperature compensated oscillator (TCXO), which is well suited for GNSS
;# signal processing, and a 4.5 V powered bias-tee to feed an active antenna.
;# Whether the bias-tee is turned off before reception depends on which version
;# of gr-osmosdr was used when compiling GNSS-SDR. With an old version
;# (for example, v0.1.4-8), the utility rtl_biast may be used to switch the
;# bias-tee, and then call gnss-sdr.
;# See https://github.com/rtlsdrblog/rtl_biast
;# After reception the bias-tee is switched off automatically by the program.
;# With newer versions of gr-osmosdr (>= 0.1.4-13), the bias-tee can be
;# activated by uncommenting the following line:
;SignalSource.osmosdr_args=rtl,bias=1
;#samples: Number of samples to be processed. Notice that 0 means infinite samples.
SignalSource.samples=0
;#repeat: Repeat the processing file.
SignalSource.repeat=false
;#dump: Dump the Signal source data to a file.
SignalSource.dump=false
SignalSource.dump_filename=../data/signal_source.dat
;######### SIGNAL_CONDITIONER CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
SignalConditioner.implementation=Pass_Through
;######### DATA_TYPE_ADAPTER CONFIG ############
;## Changes the type of input data.
;#implementation: Use [Ishort_To_Complex] or [Pass_Through]
DataTypeAdapter.implementation=Pass_Through
;#dump: Dump the filtered data to a file.
DataTypeAdapter.dump=false
;#dump_filename: Log path and filename.
DataTypeAdapter.dump_filename=../data/data_type_adapter.dat
;######### INPUT_FILTER CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
InputFilter.implementation=Freq_Xlating_Fir_Filter
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#This function calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges,
;#the desired response on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples.
InputFilter.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter.band1_begin=0.0
;InputFilter.band1_end=0.8
InputFilter.band1_end=0.85
InputFilter.band2_begin=0.90
InputFilter.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter.ampl1_begin=1.0
InputFilter.ampl1_end=1.0
InputFilter.ampl2_begin=0.0
InputFilter.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter.band1_error=1.0
InputFilter.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter.IF is the intermediate frequency (in Hz) shifted down to zero Hz
InputFilter.sampling_frequency=2000000
InputFilter.IF=0
InputFilter.decimation_factor=1
;#dump: Dump the filtered data to a file.
InputFilter.dump=false
;#dump_filename: Log path and filename.
InputFilter.dump_filename=../data/input_filter.dat
;######### RESAMPLER CONFIG ############
;## Resamples the input data.
;#implementation: Use [Pass_Through] or [Direct_Resampler]
;#[Pass_Through] disables this block
Resampler.implementation=Pass_Through
;######### ACQUISITION GLOBAL CONFIG ############
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition_Fine_Doppler
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
Acquisition.item_type=gr_complex
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition.sampled_ms=1
;#threshold: Acquisition threshold
Acquisition.threshold=0.015
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition.doppler_max=100000
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition.doppler_min=-100000
;#doppler_step Doppler step in the grid search [Hz]
Acquisition.doppler_step=500
;#maximum dwells
Acquisition.max_dwells=15
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition.dump=false
;#filename: Log path and filename
Acquisition.dump_filename=./acq_dump.dat