gnss-sdr/src/core/system_parameters/gnss_ephemeris.cc

254 lines
7.8 KiB
C++

/*!
* \file gnss_ephemeris.cc
* \brief Base class for GNSS Ephemeris
* \author Carles Fernandez, 2021. cfernandez(at)cttc.es
*
*
* -----------------------------------------------------------------------------
*
* GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
* This file is part of GNSS-SDR.
*
* Copyright (C) 2010-2021 (see AUTHORS file for a list of contributors)
* SPDX-License-Identifier: GPL-3.0-or-later
*
* -----------------------------------------------------------------------------
*/
#include "gnss_ephemeris.h"
#include "MATH_CONSTANTS.h"
#include <cmath>
void Gnss_Ephemeris::satellitePosition(double transmitTime)
{
// Restore semi-major axis
const double a = this->sqrtA * this->sqrtA;
// Computed mean motion
double n0;
if (this->System == 'E')
{
n0 = sqrt(GALILEO_GM / (a * a * a));
}
else if (this->System == 'B')
{
n0 = sqrt(BEIDOU_GM / (a * a * a));
}
else
{
n0 = sqrt(GPS_GM / (a * a * a));
}
// Time from ephemeris reference epoch
double tk = check_t(transmitTime - static_cast<double>(this->toe));
// Corrected mean motion
const double n = n0 + this->delta_n;
// Mean anomaly
double M = this->M_0 + n * tk;
// Reduce mean anomaly to between 0 and 2pi
M = fmod((M + 2.0 * GNSS_PI), (2.0 * GNSS_PI));
// Initial guess of eccentric anomaly
double E = M;
double E_old;
double dE;
// --- Iteratively compute eccentric anomaly -------------------------------
for (int32_t ii = 1; ii < 20; ii++)
{
E_old = E;
E = M + this->ecc * sin(E);
dE = fmod(E - E_old, 2.0 * GNSS_PI);
if (fabs(dE) < 1e-12)
{
// Necessary precision is reached, exit from the loop
break;
}
}
const double sek = sin(E);
const double cek = cos(E);
const double OneMinusecosE = 1.0 - this->ecc * cek;
const double sq1e2 = sqrt(1.0 - this->ecc * this->ecc);
const double ekdot = n / OneMinusecosE;
// Compute the true anomaly
const double tmp_Y = sq1e2 * sek;
const double tmp_X = cek - this->ecc;
const double nu = atan2(tmp_Y, tmp_X);
// Compute angle phi (argument of Latitude)
double phi = nu + this->omega;
// Reduce phi to between 0 and 2*pi rad
phi = fmod((phi), (2.0 * GNSS_PI));
const double s2pk = sin(2.0 * phi);
const double c2pk = cos(2.0 * phi);
const double pkdot = sq1e2 * ekdot / OneMinusecosE;
// Correct argument of latitude
const double u = phi + this->Cuc * c2pk + this->Cus * s2pk;
const double suk = sin(u);
const double cuk = cos(u);
const double ukdot = pkdot * (1.0 + 2.0 * (this->Cus * c2pk - this->Cuc * s2pk));
// Correct radius
const double r = a * OneMinusecosE + this->Crc * c2pk + this->Crs * s2pk;
const double rkdot = a * this->ecc * sek * ekdot + 2.0 * pkdot * (this->Crs * c2pk - this->Crc * s2pk);
// Correct inclination
const double i = this->i_0 + this->idot * tk + this->Cic * c2pk + this->Cis * s2pk;
const double sik = sin(i);
const double cik = cos(i);
const double ikdot = this->idot + 2.0 * pkdot * (this->Cis * c2pk - this->Cic * s2pk);
// Compute the angle between the ascending node and the Greenwich meridian
double Omega;
double Omega_dot;
if (this->System == 'B')
{
Omega_dot = this->OMEGAdot - BEIDOU_OMEGA_EARTH_DOT;
Omega = this->OMEGA_0 + Omega_dot * tk - BEIDOU_OMEGA_EARTH_DOT * static_cast<double>(this->toe);
}
else
{
Omega_dot = this->OMEGAdot - GNSS_OMEGA_EARTH_DOT;
Omega = this->OMEGA_0 + Omega_dot * tk - GNSS_OMEGA_EARTH_DOT * static_cast<double>(this->toe);
}
// Reduce to between 0 and 2*pi rad
Omega = fmod((Omega + 2.0 * GNSS_PI), (2.0 * GNSS_PI));
const double sok = sin(Omega);
const double cok = cos(Omega);
// --- Compute satellite coordinates in Earth-fixed coordinates
const double xprime = r * cuk;
const double yprime = r * suk;
this->satpos_X = xprime * cok - yprime * cik * sok;
this->satpos_Y = xprime * sok + yprime * cik * cok; // ********NOTE: in GALILEO ICD this expression is not correct because it has minus (- sin(u) * r * cos(i) * cos(Omega)) instead of plus
this->satpos_Z = yprime * sik;
// Satellite's velocity. Can be useful for Vector Tracking loops
const double xpkdot = rkdot * cuk - yprime * ukdot;
const double ypkdot = rkdot * suk + xprime * ukdot;
const double tmp = ypkdot * cik - this->satpos_Z * ikdot;
this->satvel_X = -Omega_dot * this->satpos_Y + xpkdot * cok - tmp * sok;
this->satvel_Y = Omega_dot * this->satpos_X + xpkdot * sok + tmp * cok;
this->satvel_Z = yprime * cik * ikdot + ypkdot * sik;
// Time from ephemeris reference clock
tk = check_t(transmitTime - this->toc);
this->dtr = this->af0 + this->af1 * tk + this->af2 * tk * tk;
if (this->System == 'E')
{
this->dtr -= 2.0 * sqrt(GALILEO_GM * a) * this->ecc * sek / (SPEED_OF_LIGHT_M_S * SPEED_OF_LIGHT_M_S);
}
else if (this->System == 'B')
{
this->dtr -= 2.0 * sqrt(BEIDOU_GM * a) * this->ecc * sek / (SPEED_OF_LIGHT_M_S * SPEED_OF_LIGHT_M_S);
}
else
{
this->dtr -= 2.0 * sqrt(GPS_GM * a) * this->ecc * sek / (SPEED_OF_LIGHT_M_S * SPEED_OF_LIGHT_M_S);
}
}
double Gnss_Ephemeris::sv_clock_drift(double transmitTime)
{
const double dt = check_t(transmitTime - this->toc);
this->dtr = sv_clock_relativistic_term(transmitTime);
this->satClkDrift = this->af0 + this->af1 * dt + this->af2 * (dt * dt) + this->dtr;
return this->satClkDrift;
}
double Gnss_Ephemeris::sv_clock_relativistic_term(double transmitTime) const
{
// Restore semi-major axis
const double a = this->sqrtA * this->sqrtA;
// Time from ephemeris reference epoch
const double tk = check_t(transmitTime - this->toe);
// Computed mean motion
double n0;
if (this->System == 'E')
{
n0 = sqrt(GALILEO_GM / (a * a * a));
}
if (this->System == 'E')
{
n0 = sqrt(BEIDOU_GM / (a * a * a));
}
else
{
n0 = sqrt(GPS_GM / (a * a * a));
}
// Corrected mean motion
const double n = n0 + this->delta_n;
// Mean anomaly
const double M = this->M_0 + n * tk;
// Reduce mean anomaly to between 0 and 2pi
// M = fmod((M + 2.0 * GNSS_PI), (2.0 * GNSS_PI));
// Initial guess of eccentric anomaly
double E = M;
double E_old;
double dE;
// --- Iteratively compute eccentric anomaly ----------------------------
for (int32_t ii = 1; ii < 20; ii++)
{
E_old = E;
E = M + this->ecc * sin(E);
dE = fmod(E - E_old, 2.0 * GNSS_PI);
if (fabs(dE) < 1e-12)
{
// Necessary precision is reached, exit from the loop
break;
}
}
const double sek = sin(E);
// Compute relativistic correction term
double dtr_;
if (this->System == 'E')
{
dtr_ = GALILEO_F * this->ecc * this->sqrtA * sek;
}
if (this->System == 'B')
{
dtr_ = BEIDOU_F * this->ecc * this->sqrtA * sek;
}
else
{
dtr_ = GPS_F * this->ecc * this->sqrtA * sek;
}
return dtr_;
}
double Gnss_Ephemeris::check_t(double time) const
{
const double half_week = 302400.0; // seconds
double corrTime = time;
if (time > half_week)
{
corrTime = time - 2.0 * half_week;
}
else if (time < -half_week)
{
corrTime = time + 2.0 * half_week;
}
return corrTime;
}