gnss-sdr/src/algorithms/PVT/gnuradio_blocks/rtklib_pvt_gs.cc

2224 lines
116 KiB
C++

/*!
* \file rtklib_pvt_gs.cc
* \brief Interface of a Position Velocity and Time computation block
* \author Javier Arribas, 2017. jarribas(at)cttc.es
*
* -----------------------------------------------------------------------------
*
* GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
* This file is part of GNSS-SDR.
*
* Copyright (C) 2010-2020 (see AUTHORS file for a list of contributors)
* SPDX-License-Identifier: GPL-3.0-or-later
*
* -----------------------------------------------------------------------------
*/
#include "rtklib_pvt_gs.h"
#include "MATH_CONSTANTS.h"
#include "beidou_dnav_almanac.h"
#include "beidou_dnav_ephemeris.h"
#include "beidou_dnav_iono.h"
#include "beidou_dnav_utc_model.h"
#include "display.h"
#include "galileo_almanac.h"
#include "galileo_almanac_helper.h"
#include "galileo_ephemeris.h"
#include "galileo_iono.h"
#include "galileo_utc_model.h"
#include "geojson_printer.h"
#include "glonass_gnav_almanac.h"
#include "glonass_gnav_ephemeris.h"
#include "glonass_gnav_utc_model.h"
#include "gnss_frequencies.h"
#include "gnss_sdr_create_directory.h"
#include "gnss_sdr_make_unique.h"
#include "gps_almanac.h"
#include "gps_cnav_ephemeris.h"
#include "gps_cnav_iono.h"
#include "gps_cnav_utc_model.h"
#include "gps_ephemeris.h"
#include "gps_iono.h"
#include "gps_utc_model.h"
#include "gpx_printer.h"
#include "kml_printer.h"
#include "monitor_pvt.h"
#include "monitor_pvt_udp_sink.h"
#include "nmea_printer.h"
#include "pvt_conf.h"
#include "rinex_printer.h"
#include "rtcm_printer.h"
#include "rtklib_solver.h"
#include <boost/any.hpp> // for any_cast, any
#include <boost/archive/xml_iarchive.hpp> // for xml_iarchive
#include <boost/archive/xml_oarchive.hpp> // for xml_oarchive
#include <boost/exception/diagnostic_information.hpp>
#include <boost/exception/exception.hpp>
#include <boost/serialization/map.hpp>
#include <boost/serialization/nvp.hpp> // for nvp, make_nvp
#include <glog/logging.h> // for LOG
#include <gnuradio/io_signature.h> // for io_signature
#include <pmt/pmt_sugar.h> // for mp
#include <algorithm> // for sort, unique
#include <cerrno> // for errno
#include <cstring> // for strerror
#include <exception> // for exception
#include <fstream> // for ofstream
#include <iomanip> // for put_time, setprecision
#include <iostream> // for operator<<
#include <locale> // for locale
#include <sstream> // for ostringstream
#include <stdexcept> // for length_error
#include <sys/ipc.h> // for IPC_CREAT
#include <sys/msg.h> // for msgctl
#include <typeinfo> // for std::type_info, typeid
#include <utility> // for pair
#if HAS_GENERIC_LAMBDA
#else
#include <boost/bind/bind.hpp>
#endif
#if HAS_STD_FILESYSTEM
#include <system_error>
namespace errorlib = std;
#if HAS_STD_FILESYSTEM_EXPERIMENTAL
#include <experimental/filesystem>
namespace fs = std::experimental::filesystem;
#else
#include <filesystem>
namespace fs = std::filesystem;
#endif
#else
#include <boost/filesystem/path.hpp>
#include <boost/system/error_code.hpp> // for error_code
namespace fs = boost::filesystem;
namespace errorlib = boost::system;
#endif
#if USE_OLD_BOOST_MATH_COMMON_FACTOR
#include <boost/math/common_factor_rt.hpp>
namespace bc = boost::math;
#else
#include <boost/integer/common_factor_rt.hpp>
namespace bc = boost::integer;
#endif
rtklib_pvt_gs_sptr rtklib_make_pvt_gs(uint32_t nchannels,
const Pvt_Conf& conf_,
const rtk_t& rtk)
{
return rtklib_pvt_gs_sptr(new rtklib_pvt_gs(nchannels,
conf_,
rtk));
}
rtklib_pvt_gs::rtklib_pvt_gs(uint32_t nchannels,
const Pvt_Conf& conf_,
const rtk_t& rtk) : gr::sync_block("rtklib_pvt_gs",
gr::io_signature::make(nchannels, nchannels, sizeof(Gnss_Synchro)),
gr::io_signature::make(0, 0, 0))
{
// Send feedback message to observables block with the receiver clock offset
this->message_port_register_out(pmt::mp("pvt_to_observables"));
// Send PVT status to gnss_flowgraph
this->message_port_register_out(pmt::mp("status"));
d_mapStringValues["1C"] = evGPS_1C;
d_mapStringValues["2S"] = evGPS_2S;
d_mapStringValues["L5"] = evGPS_L5;
d_mapStringValues["1B"] = evGAL_1B;
d_mapStringValues["5X"] = evGAL_5X;
d_mapStringValues["E6"] = evGAL_E6;
d_mapStringValues["7X"] = evGAL_7X;
d_mapStringValues["1G"] = evGLO_1G;
d_mapStringValues["2G"] = evGLO_2G;
d_mapStringValues["B1"] = evBDS_B1;
d_mapStringValues["B2"] = evBDS_B2;
d_mapStringValues["B3"] = evBDS_B3;
d_initial_carrier_phase_offset_estimation_rads = std::vector<double>(nchannels, 0.0);
d_channel_initialized = std::vector<bool>(nchannels, false);
d_max_obs_block_rx_clock_offset_ms = conf_.max_obs_block_rx_clock_offset_ms;
d_output_rate_ms = conf_.output_rate_ms;
d_display_rate_ms = conf_.display_rate_ms;
d_report_rate_ms = 1000; // report every second PVT to gnss_synchro
d_dump = conf_.dump;
d_dump_mat = conf_.dump_mat and d_dump;
d_dump_filename = conf_.dump_filename;
std::string dump_ls_pvt_filename = conf_.dump_filename;
if (d_dump)
{
std::string dump_path;
// Get path
if (d_dump_filename.find_last_of('/') != std::string::npos)
{
std::string dump_filename_ = d_dump_filename.substr(d_dump_filename.find_last_of('/') + 1);
dump_path = d_dump_filename.substr(0, d_dump_filename.find_last_of('/'));
d_dump_filename = dump_filename_;
}
else
{
dump_path = std::string(".");
}
if (d_dump_filename.empty())
{
d_dump_filename = "pvt";
}
// remove extension if any
if (d_dump_filename.substr(1).find_last_of('.') != std::string::npos)
{
d_dump_filename = d_dump_filename.substr(0, d_dump_filename.find_last_of('.'));
}
dump_ls_pvt_filename = dump_path + fs::path::preferred_separator + d_dump_filename;
dump_ls_pvt_filename.append(".dat");
// create directory
if (!gnss_sdr_create_directory(dump_path))
{
std::cerr << "GNSS-SDR cannot create dump file for the PVT block. Wrong permissions?\n";
d_dump = false;
}
}
d_nchannels = nchannels;
d_type_of_rx = conf_.type_of_receiver;
// GPS Ephemeris data message port in
this->message_port_register_in(pmt::mp("telemetry"));
this->set_msg_handler(pmt::mp("telemetry"),
#if HAS_GENERIC_LAMBDA
[this](auto&& PH1) { msg_handler_telemetry(PH1); });
#else
#if USE_BOOST_BIND_PLACEHOLDERS
boost::bind(&rtklib_pvt_gs::msg_handler_telemetry, this, boost::placeholders::_1));
#else
boost::bind(&rtklib_pvt_gs::msg_handler_telemetry, this, _1));
#endif
#endif
// initialize kml_printer
const std::string kml_dump_filename = d_dump_filename;
d_kml_output_enabled = conf_.kml_output_enabled;
d_kml_rate_ms = conf_.kml_rate_ms;
if (d_kml_rate_ms == 0)
{
d_kml_output_enabled = false;
}
if (d_kml_output_enabled)
{
d_kml_dump = std::make_unique<Kml_Printer>(conf_.kml_output_path);
d_kml_dump->set_headers(kml_dump_filename);
}
else
{
d_kml_dump = nullptr;
}
// initialize gpx_printer
const std::string gpx_dump_filename = d_dump_filename;
d_gpx_output_enabled = conf_.gpx_output_enabled;
d_gpx_rate_ms = conf_.gpx_rate_ms;
if (d_gpx_rate_ms == 0)
{
d_gpx_output_enabled = false;
}
if (d_gpx_output_enabled)
{
d_gpx_dump = std::make_unique<Gpx_Printer>(conf_.gpx_output_path);
d_gpx_dump->set_headers(gpx_dump_filename);
}
else
{
d_gpx_dump = nullptr;
}
// initialize geojson_printer
const std::string geojson_dump_filename = d_dump_filename;
d_geojson_output_enabled = conf_.geojson_output_enabled;
d_geojson_rate_ms = conf_.geojson_rate_ms;
if (d_geojson_rate_ms == 0)
{
d_geojson_output_enabled = false;
}
if (d_geojson_output_enabled)
{
d_geojson_printer = std::make_unique<GeoJSON_Printer>(conf_.geojson_output_path);
d_geojson_printer->set_headers(geojson_dump_filename);
}
else
{
d_geojson_printer = nullptr;
}
// initialize nmea_printer
d_nmea_output_file_enabled = (conf_.nmea_output_file_enabled or conf_.flag_nmea_tty_port);
d_nmea_rate_ms = conf_.nmea_rate_ms;
if (d_nmea_rate_ms == 0)
{
d_nmea_output_file_enabled = false;
}
if (d_nmea_output_file_enabled)
{
d_nmea_printer = std::make_unique<Nmea_Printer>(conf_.nmea_dump_filename, conf_.nmea_output_file_enabled, conf_.flag_nmea_tty_port, conf_.nmea_dump_devname, conf_.nmea_output_file_path);
}
else
{
d_nmea_printer = nullptr;
}
// initialize rtcm_printer
const std::string rtcm_dump_filename = d_dump_filename;
if (conf_.flag_rtcm_server or conf_.flag_rtcm_tty_port or conf_.rtcm_output_file_enabled)
{
d_rtcm_printer = std::make_unique<Rtcm_Printer>(rtcm_dump_filename, conf_.rtcm_output_file_enabled, conf_.flag_rtcm_server, conf_.flag_rtcm_tty_port, conf_.rtcm_tcp_port, conf_.rtcm_station_id, conf_.rtcm_dump_devname, true, conf_.rtcm_output_file_path);
std::map<int, int> rtcm_msg_rate_ms = conf_.rtcm_msg_rate_ms;
if (rtcm_msg_rate_ms.find(1019) != rtcm_msg_rate_ms.end())
{
d_rtcm_MT1019_rate_ms = rtcm_msg_rate_ms[1019];
}
else
{
d_rtcm_MT1019_rate_ms = bc::lcm(5000, d_output_rate_ms); // default value if not set
}
if (rtcm_msg_rate_ms.find(1020) != rtcm_msg_rate_ms.end())
{
d_rtcm_MT1020_rate_ms = rtcm_msg_rate_ms[1020];
}
else
{
d_rtcm_MT1020_rate_ms = bc::lcm(5000, d_output_rate_ms); // default value if not set
}
if (rtcm_msg_rate_ms.find(1045) != rtcm_msg_rate_ms.end())
{
d_rtcm_MT1045_rate_ms = rtcm_msg_rate_ms[1045];
}
else
{
d_rtcm_MT1045_rate_ms = bc::lcm(5000, d_output_rate_ms); // default value if not set
}
if (rtcm_msg_rate_ms.find(1077) != rtcm_msg_rate_ms.end()) // whatever between 1071 and 1077
{
d_rtcm_MT1077_rate_ms = rtcm_msg_rate_ms[1077];
}
else
{
d_rtcm_MT1077_rate_ms = bc::lcm(1000, d_output_rate_ms); // default value if not set
}
if (rtcm_msg_rate_ms.find(1087) != rtcm_msg_rate_ms.end()) // whatever between 1081 and 1087
{
d_rtcm_MT1087_rate_ms = rtcm_msg_rate_ms[1087];
}
else
{
d_rtcm_MT1087_rate_ms = bc::lcm(1000, d_output_rate_ms); // default value if not set
}
if (rtcm_msg_rate_ms.find(1097) != rtcm_msg_rate_ms.end()) // whatever between 1091 and 1097
{
d_rtcm_MT1097_rate_ms = rtcm_msg_rate_ms[1097];
d_rtcm_MSM_rate_ms = rtcm_msg_rate_ms[1097];
}
else
{
d_rtcm_MT1097_rate_ms = bc::lcm(1000, d_output_rate_ms); // default value if not set
d_rtcm_MSM_rate_ms = bc::lcm(1000, d_output_rate_ms); // default value if not set
}
d_rtcm_enabled = true;
}
else
{
d_rtcm_MT1019_rate_ms = 0;
d_rtcm_MT1045_rate_ms = 0;
d_rtcm_MT1020_rate_ms = 0;
d_rtcm_MT1077_rate_ms = 0;
d_rtcm_MT1087_rate_ms = 0;
d_rtcm_MT1097_rate_ms = 0;
d_rtcm_MSM_rate_ms = 0;
d_rtcm_enabled = false;
d_rtcm_printer = nullptr;
}
// initialize RINEX printer
d_rinex_output_enabled = conf_.rinex_output_enabled;
d_rinex_version = conf_.rinex_version;
if (d_rinex_output_enabled)
{
d_rp = std::make_unique<Rinex_Printer>(d_rinex_version, conf_.rinex_output_path, conf_.rinex_name);
d_rp->set_pre_2009_file(conf_.pre_2009_file);
}
else
{
d_rp = nullptr;
}
d_rinexobs_rate_ms = conf_.rinexobs_rate_ms;
// XML printer
d_xml_storage = conf_.xml_output_enabled;
if (d_xml_storage)
{
d_xml_base_path = conf_.xml_output_path;
fs::path full_path(fs::current_path());
const fs::path p(d_xml_base_path);
if (!fs::exists(p))
{
std::string new_folder;
for (auto& folder : fs::path(d_xml_base_path))
{
new_folder += folder.string();
errorlib::error_code ec;
if (!fs::exists(new_folder))
{
if (!fs::create_directory(new_folder, ec))
{
std::cout << "Could not create the " << new_folder << " folder.\n";
d_xml_base_path = full_path.string();
}
}
new_folder += fs::path::preferred_separator;
}
}
else
{
d_xml_base_path = p.string();
}
if (d_xml_base_path != ".")
{
std::cout << "XML files will be stored at " << d_xml_base_path << '\n';
}
d_xml_base_path = d_xml_base_path + fs::path::preferred_separator;
}
d_rx_time = 0.0;
d_last_status_print_seg = 0;
// PVT MONITOR
d_flag_monitor_pvt_enabled = conf_.monitor_enabled;
if (d_flag_monitor_pvt_enabled)
{
std::string address_string = conf_.udp_addresses;
std::vector<std::string> udp_addr_vec = split_string(address_string, '_');
std::sort(udp_addr_vec.begin(), udp_addr_vec.end());
udp_addr_vec.erase(std::unique(udp_addr_vec.begin(), udp_addr_vec.end()), udp_addr_vec.end());
d_udp_sink_ptr = std::make_unique<Monitor_Pvt_Udp_Sink>(udp_addr_vec, conf_.udp_port, conf_.protobuf_enabled);
}
else
{
d_udp_sink_ptr = nullptr;
}
// Create Sys V message queue
d_first_fix = true;
d_sysv_msg_key = 1101;
const int msgflg = IPC_CREAT | 0666;
if ((d_sysv_msqid = msgget(d_sysv_msg_key, msgflg)) == -1)
{
std::cout << "GNSS-SDR cannot create System V message queues.\n";
LOG(WARNING) << "The System V message queue is not available. Error: " << errno << " - " << strerror(errno);
}
// Display time in local time zone
d_show_local_time_zone = conf_.show_local_time_zone;
std::ostringstream os;
#ifdef HAS_PUT_TIME
time_t when = std::time(nullptr);
auto const tm = *std::localtime(&when);
os << std::put_time(&tm, "%z");
#endif
std::string utc_diff_str = os.str(); // in ISO 8601 format: "+HHMM" or "-HHMM"
if (utc_diff_str.empty())
{
utc_diff_str = "+0000";
}
const int h = std::stoi(utc_diff_str.substr(0, 3), nullptr, 10);
const int m = std::stoi(utc_diff_str[0] + utc_diff_str.substr(3), nullptr, 10);
d_utc_diff_time = boost::posix_time::hours(h) + boost::posix_time::minutes(m);
std::ostringstream os2;
#ifdef HAS_PUT_TIME
os2 << std::put_time(&tm, "%Z");
#endif
const std::string time_zone_abrv = os2.str();
if (time_zone_abrv.empty())
{
if (utc_diff_str == "+0000")
{
d_local_time_str = " UTC";
}
else
{
d_local_time_str = " (UTC " + utc_diff_str.substr(0, 3) + ":" + utc_diff_str.substr(3, 2) + ")";
}
}
else
{
d_local_time_str = std::string(" ") + time_zone_abrv + " (UTC " + utc_diff_str.substr(0, 3) + ":" + utc_diff_str.substr(3, 2) + ")";
}
d_waiting_obs_block_rx_clock_offset_correction_msg = false;
d_enable_rx_clock_correction = conf_.enable_rx_clock_correction;
if (d_enable_rx_clock_correction == true)
{
// setup two PVT solvers: internal solver for rx clock and user solver
// user PVT solver
d_user_pvt_solver = std::make_shared<Rtklib_Solver>(rtk, static_cast<int32_t>(nchannels), dump_ls_pvt_filename, d_dump, d_dump_mat);
d_user_pvt_solver->set_averaging_depth(1);
d_user_pvt_solver->set_pre_2009_file(conf_.pre_2009_file);
// internal PVT solver, mainly used to estimate the receiver clock
rtk_t internal_rtk = rtk;
internal_rtk.opt.mode = PMODE_SINGLE; // use single positioning mode in internal PVT solver
d_internal_pvt_solver = std::make_shared<Rtklib_Solver>(internal_rtk, static_cast<int32_t>(nchannels), dump_ls_pvt_filename, false, false);
d_internal_pvt_solver->set_averaging_depth(1);
d_internal_pvt_solver->set_pre_2009_file(conf_.pre_2009_file);
}
else
{
// only one solver, customized by the user options
d_internal_pvt_solver = std::make_shared<Rtklib_Solver>(rtk, static_cast<int32_t>(nchannels), dump_ls_pvt_filename, d_dump, d_dump_mat);
d_internal_pvt_solver->set_averaging_depth(1);
d_internal_pvt_solver->set_pre_2009_file(conf_.pre_2009_file);
d_user_pvt_solver = d_internal_pvt_solver;
}
d_gps_ephemeris_sptr_type_hash_code = typeid(std::shared_ptr<Gps_Ephemeris>).hash_code();
d_gps_iono_sptr_type_hash_code = typeid(std::shared_ptr<Gps_Iono>).hash_code();
d_gps_utc_model_sptr_type_hash_code = typeid(std::shared_ptr<Gps_Utc_Model>).hash_code();
d_gps_cnav_ephemeris_sptr_type_hash_code = typeid(std::shared_ptr<Gps_CNAV_Ephemeris>).hash_code();
d_gps_cnav_iono_sptr_type_hash_code = typeid(std::shared_ptr<Gps_CNAV_Iono>).hash_code();
d_gps_cnav_utc_model_sptr_type_hash_code = typeid(std::shared_ptr<Gps_CNAV_Utc_Model>).hash_code();
d_gps_almanac_sptr_type_hash_code = typeid(std::shared_ptr<Gps_Almanac>).hash_code();
d_galileo_ephemeris_sptr_type_hash_code = typeid(std::shared_ptr<Galileo_Ephemeris>).hash_code();
d_galileo_iono_sptr_type_hash_code = typeid(std::shared_ptr<Galileo_Iono>).hash_code();
d_galileo_utc_model_sptr_type_hash_code = typeid(std::shared_ptr<Galileo_Utc_Model>).hash_code();
d_galileo_almanac_helper_sptr_type_hash_code = typeid(std::shared_ptr<Galileo_Almanac_Helper>).hash_code();
d_galileo_almanac_sptr_type_hash_code = typeid(std::shared_ptr<Galileo_Almanac>).hash_code();
d_glonass_gnav_ephemeris_sptr_type_hash_code = typeid(std::shared_ptr<Glonass_Gnav_Ephemeris>).hash_code();
d_glonass_gnav_utc_model_sptr_type_hash_code = typeid(std::shared_ptr<Glonass_Gnav_Utc_Model>).hash_code();
d_glonass_gnav_almanac_sptr_type_hash_code = typeid(std::shared_ptr<Glonass_Gnav_Almanac>).hash_code();
d_beidou_dnav_ephemeris_sptr_type_hash_code = typeid(std::shared_ptr<Beidou_Dnav_Ephemeris>).hash_code();
d_beidou_dnav_iono_sptr_type_hash_code = typeid(std::shared_ptr<Beidou_Dnav_Iono>).hash_code();
d_beidou_dnav_utc_model_sptr_type_hash_code = typeid(std::shared_ptr<Beidou_Dnav_Utc_Model>).hash_code();
d_beidou_dnav_almanac_sptr_type_hash_code = typeid(std::shared_ptr<Beidou_Dnav_Almanac>).hash_code();
d_start = std::chrono::system_clock::now();
}
rtklib_pvt_gs::~rtklib_pvt_gs()
{
DLOG(INFO) << "PVT block destructor called.";
if (d_sysv_msqid != -1)
{
msgctl(d_sysv_msqid, IPC_RMID, nullptr);
}
try
{
if (d_xml_storage)
{
// save GPS L2CM ephemeris to XML file
std::string file_name = d_xml_base_path + "gps_cnav_ephemeris.xml";
if (d_internal_pvt_solver->gps_cnav_ephemeris_map.empty() == false)
{
std::ofstream ofs;
try
{
ofs.open(file_name.c_str(), std::ofstream::trunc | std::ofstream::out);
boost::archive::xml_oarchive xml(ofs);
xml << boost::serialization::make_nvp("GNSS-SDR_cnav_ephemeris_map", d_internal_pvt_solver->gps_cnav_ephemeris_map);
LOG(INFO) << "Saved GPS L2CM or L5 Ephemeris map data";
}
catch (const boost::archive::archive_exception& e)
{
LOG(WARNING) << e.what();
}
catch (const std::exception& e)
{
LOG(WARNING) << e.what();
}
}
else
{
LOG(INFO) << "Failed to save GPS L2CM or L5 Ephemeris, map is empty";
}
// save GPS L1 CA ephemeris to XML file
file_name = d_xml_base_path + "gps_ephemeris.xml";
if (d_internal_pvt_solver->gps_ephemeris_map.empty() == false)
{
std::ofstream ofs;
try
{
ofs.open(file_name.c_str(), std::ofstream::trunc | std::ofstream::out);
boost::archive::xml_oarchive xml(ofs);
xml << boost::serialization::make_nvp("GNSS-SDR_ephemeris_map", d_internal_pvt_solver->gps_ephemeris_map);
LOG(INFO) << "Saved GPS L1 CA Ephemeris map data";
}
catch (const boost::archive::archive_exception& e)
{
LOG(WARNING) << e.what();
}
catch (const std::exception& e)
{
LOG(WARNING) << e.what();
}
}
else
{
LOG(INFO) << "Failed to save GPS L1 CA Ephemeris, map is empty";
}
// save Galileo E1 ephemeris to XML file
file_name = d_xml_base_path + "gal_ephemeris.xml";
if (d_internal_pvt_solver->galileo_ephemeris_map.empty() == false)
{
std::ofstream ofs;
try
{
ofs.open(file_name.c_str(), std::ofstream::trunc | std::ofstream::out);
boost::archive::xml_oarchive xml(ofs);
xml << boost::serialization::make_nvp("GNSS-SDR_gal_ephemeris_map", d_internal_pvt_solver->galileo_ephemeris_map);
LOG(INFO) << "Saved Galileo E1 Ephemeris map data";
}
catch (const boost::archive::archive_exception& e)
{
LOG(WARNING) << e.what();
}
catch (const std::ofstream::failure& e)
{
LOG(WARNING) << "Problem opening output XML file";
}
catch (const std::exception& e)
{
LOG(WARNING) << e.what();
}
}
else
{
LOG(INFO) << "Failed to save Galileo E1 Ephemeris, map is empty";
}
// save GLONASS GNAV ephemeris to XML file
file_name = d_xml_base_path + "eph_GLONASS_GNAV.xml";
if (d_internal_pvt_solver->glonass_gnav_ephemeris_map.empty() == false)
{
std::ofstream ofs;
try
{
ofs.open(file_name.c_str(), std::ofstream::trunc | std::ofstream::out);
boost::archive::xml_oarchive xml(ofs);
xml << boost::serialization::make_nvp("GNSS-SDR_gnav_ephemeris_map", d_internal_pvt_solver->glonass_gnav_ephemeris_map);
LOG(INFO) << "Saved GLONASS GNAV Ephemeris map data";
}
catch (const boost::archive::archive_exception& e)
{
LOG(WARNING) << e.what();
}
catch (const std::ofstream::failure& e)
{
LOG(WARNING) << "Problem opening output XML file";
}
catch (const std::exception& e)
{
LOG(WARNING) << e.what();
}
}
else
{
LOG(INFO) << "Failed to save GLONASS GNAV Ephemeris, map is empty";
}
// Save GPS UTC model parameters
file_name = d_xml_base_path + "gps_utc_model.xml";
if (d_internal_pvt_solver->gps_utc_model.valid)
{
std::ofstream ofs;
try
{
ofs.open(file_name.c_str(), std::ofstream::trunc | std::ofstream::out);
boost::archive::xml_oarchive xml(ofs);
xml << boost::serialization::make_nvp("GNSS-SDR_utc_model", d_internal_pvt_solver->gps_utc_model);
LOG(INFO) << "Saved GPS UTC model parameters";
}
catch (const std::ofstream::failure& e)
{
LOG(WARNING) << "Problem opening output XML file";
}
catch (const boost::archive::archive_exception& e)
{
LOG(WARNING) << e.what();
}
catch (const std::exception& e)
{
LOG(WARNING) << e.what();
}
}
else
{
LOG(INFO) << "Failed to save GPS UTC model parameters, not valid data";
}
// Save Galileo UTC model parameters
file_name = d_xml_base_path + "gal_utc_model.xml";
if (d_internal_pvt_solver->galileo_utc_model.Delta_tLS_6 != 0.0)
{
std::ofstream ofs;
try
{
ofs.open(file_name.c_str(), std::ofstream::trunc | std::ofstream::out);
boost::archive::xml_oarchive xml(ofs);
xml << boost::serialization::make_nvp("GNSS-SDR_gal_utc_model", d_internal_pvt_solver->galileo_utc_model);
LOG(INFO) << "Saved Galileo UTC model parameters";
}
catch (const boost::archive::archive_exception& e)
{
LOG(WARNING) << e.what();
}
catch (const std::ofstream::failure& e)
{
LOG(WARNING) << "Problem opening output XML file";
}
catch (const std::exception& e)
{
LOG(WARNING) << e.what();
}
}
else
{
LOG(INFO) << "Failed to save Galileo UTC model parameters, not valid data";
}
// Save GPS iono parameters
file_name = d_xml_base_path + "gps_iono.xml";
if (d_internal_pvt_solver->gps_iono.valid == true)
{
std::ofstream ofs;
try
{
ofs.open(file_name.c_str(), std::ofstream::trunc | std::ofstream::out);
boost::archive::xml_oarchive xml(ofs);
xml << boost::serialization::make_nvp("GNSS-SDR_iono_model", d_internal_pvt_solver->gps_iono);
LOG(INFO) << "Saved GPS ionospheric model parameters";
}
catch (const boost::archive::archive_exception& e)
{
LOG(WARNING) << e.what();
}
catch (const std::ofstream::failure& e)
{
LOG(WARNING) << "Problem opening output XML file";
}
catch (const std::exception& e)
{
LOG(WARNING) << e.what();
}
}
else
{
LOG(INFO) << "Failed to save GPS ionospheric model parameters, not valid data";
}
// Save GPS CNAV iono parameters
file_name = d_xml_base_path + "gps_cnav_iono.xml";
if (d_internal_pvt_solver->gps_cnav_iono.valid == true)
{
std::ofstream ofs;
try
{
ofs.open(file_name.c_str(), std::ofstream::trunc | std::ofstream::out);
boost::archive::xml_oarchive xml(ofs);
xml << boost::serialization::make_nvp("GNSS-SDR_cnav_iono_model", d_internal_pvt_solver->gps_cnav_iono);
LOG(INFO) << "Saved GPS CNAV ionospheric model parameters";
}
catch (const boost::archive::archive_exception& e)
{
LOG(WARNING) << e.what();
}
catch (const std::ofstream::failure& e)
{
LOG(WARNING) << "Problem opening output XML file";
}
catch (const std::exception& e)
{
LOG(WARNING) << e.what();
}
}
else
{
LOG(INFO) << "Failed to save GPS CNAV ionospheric model parameters, not valid data";
}
// Save Galileo iono parameters
file_name = d_xml_base_path + "gal_iono.xml";
if (d_internal_pvt_solver->galileo_iono.ai0_5 != 0.0)
{
std::ofstream ofs;
try
{
ofs.open(file_name.c_str(), std::ofstream::trunc | std::ofstream::out);
boost::archive::xml_oarchive xml(ofs);
xml << boost::serialization::make_nvp("GNSS-SDR_gal_iono_model", d_internal_pvt_solver->galileo_iono);
LOG(INFO) << "Saved Galileo ionospheric model parameters";
}
catch (const boost::archive::archive_exception& e)
{
LOG(WARNING) << e.what();
}
catch (const std::ofstream::failure& e)
{
LOG(WARNING) << "Problem opening output XML file";
}
catch (const std::exception& e)
{
LOG(WARNING) << e.what();
}
}
else
{
LOG(INFO) << "Failed to save Galileo ionospheric model parameters, not valid data";
}
// save GPS almanac to XML file
file_name = d_xml_base_path + "gps_almanac.xml";
if (d_internal_pvt_solver->gps_almanac_map.empty() == false)
{
std::ofstream ofs;
try
{
ofs.open(file_name.c_str(), std::ofstream::trunc | std::ofstream::out);
boost::archive::xml_oarchive xml(ofs);
xml << boost::serialization::make_nvp("GNSS-SDR_gps_almanac_map", d_internal_pvt_solver->gps_almanac_map);
LOG(INFO) << "Saved GPS almanac map data";
}
catch (const boost::archive::archive_exception& e)
{
LOG(WARNING) << e.what();
}
catch (const std::ofstream::failure& e)
{
LOG(WARNING) << "Problem opening output XML file";
}
catch (const std::exception& e)
{
LOG(WARNING) << e.what();
}
}
else
{
LOG(INFO) << "Failed to save GPS almanac, map is empty";
}
// Save Galileo almanac
file_name = d_xml_base_path + "gal_almanac.xml";
if (d_internal_pvt_solver->galileo_almanac_map.empty() == false)
{
std::ofstream ofs;
try
{
ofs.open(file_name.c_str(), std::ofstream::trunc | std::ofstream::out);
boost::archive::xml_oarchive xml(ofs);
xml << boost::serialization::make_nvp("GNSS-SDR_gal_almanac_map", d_internal_pvt_solver->galileo_almanac_map);
LOG(INFO) << "Saved Galileo almanac data";
}
catch (const boost::archive::archive_exception& e)
{
LOG(WARNING) << e.what();
}
catch (const std::ofstream::failure& e)
{
LOG(WARNING) << "Problem opening output XML file";
}
catch (const std::exception& e)
{
LOG(WARNING) << e.what();
}
}
else
{
LOG(INFO) << "Failed to save Galileo almanac, not valid data";
}
// Save GPS CNAV UTC model parameters
file_name = d_xml_base_path + "gps_cnav_utc_model.xml";
if (d_internal_pvt_solver->gps_cnav_utc_model.valid)
{
std::ofstream ofs;
try
{
ofs.open(file_name.c_str(), std::ofstream::trunc | std::ofstream::out);
boost::archive::xml_oarchive xml(ofs);
xml << boost::serialization::make_nvp("GNSS-SDR_cnav_utc_model", d_internal_pvt_solver->gps_cnav_utc_model);
LOG(INFO) << "Saved GPS CNAV UTC model parameters";
}
catch (const boost::archive::archive_exception& e)
{
LOG(WARNING) << e.what();
}
catch (const std::ofstream::failure& e)
{
LOG(WARNING) << "Problem opening output XML file";
}
catch (const std::exception& e)
{
LOG(WARNING) << e.what();
}
}
else
{
LOG(INFO) << "Failed to save GPS CNAV UTC model parameters, not valid data";
}
// save GLONASS GNAV ephemeris to XML file
file_name = d_xml_base_path + "glo_gnav_ephemeris.xml";
if (d_internal_pvt_solver->glonass_gnav_ephemeris_map.empty() == false)
{
std::ofstream ofs;
try
{
ofs.open(file_name.c_str(), std::ofstream::trunc | std::ofstream::out);
boost::archive::xml_oarchive xml(ofs);
xml << boost::serialization::make_nvp("GNSS-SDR_gnav_ephemeris_map", d_internal_pvt_solver->glonass_gnav_ephemeris_map);
LOG(INFO) << "Saved GLONASS GNAV ephemeris map data";
}
catch (const boost::archive::archive_exception& e)
{
LOG(WARNING) << e.what();
}
catch (const std::ofstream::failure& e)
{
LOG(WARNING) << "Problem opening output XML file";
}
catch (const std::exception& e)
{
LOG(WARNING) << e.what();
}
}
else
{
LOG(INFO) << "Failed to save GLONASS GNAV ephemeris, map is empty";
}
// save GLONASS UTC model parameters to XML file
file_name = d_xml_base_path + "glo_utc_model.xml";
if (d_internal_pvt_solver->glonass_gnav_utc_model.valid)
{
std::ofstream ofs;
try
{
ofs.open(file_name.c_str(), std::ofstream::trunc | std::ofstream::out);
boost::archive::xml_oarchive xml(ofs);
xml << boost::serialization::make_nvp("GNSS-SDR_gnav_utc_model", d_internal_pvt_solver->glonass_gnav_utc_model);
LOG(INFO) << "Saved GLONASS UTC model parameters";
}
catch (const boost::archive::archive_exception& e)
{
LOG(WARNING) << e.what();
}
catch (const std::ofstream::failure& e)
{
LOG(WARNING) << "Problem opening output XML file";
}
catch (const std::exception& e)
{
LOG(WARNING) << e.what();
}
}
else
{
LOG(INFO) << "Failed to save GLONASS GNAV ephemeris, not valid data";
}
// save BeiDou DNAV ephemeris to XML file
file_name = d_xml_base_path + "bds_dnav_ephemeris.xml";
if (d_internal_pvt_solver->beidou_dnav_ephemeris_map.empty() == false)
{
std::ofstream ofs;
try
{
ofs.open(file_name.c_str(), std::ofstream::trunc | std::ofstream::out);
boost::archive::xml_oarchive xml(ofs);
xml << boost::serialization::make_nvp("GNSS-SDR_bds_dnav_ephemeris_map", d_internal_pvt_solver->beidou_dnav_ephemeris_map);
LOG(INFO) << "Saved BeiDou DNAV Ephemeris map data";
}
catch (const boost::archive::archive_exception& e)
{
LOG(WARNING) << e.what();
}
catch (const std::ofstream::failure& e)
{
LOG(WARNING) << "Problem opening output XML file";
}
catch (const std::exception& e)
{
LOG(WARNING) << e.what();
}
}
else
{
LOG(INFO) << "Failed to save BeiDou DNAV Ephemeris, map is empty";
}
// Save BeiDou DNAV iono parameters
file_name = d_xml_base_path + "bds_dnav_iono.xml";
if (d_internal_pvt_solver->beidou_dnav_iono.valid)
{
std::ofstream ofs;
try
{
ofs.open(file_name.c_str(), std::ofstream::trunc | std::ofstream::out);
boost::archive::xml_oarchive xml(ofs);
xml << boost::serialization::make_nvp("GNSS-SDR_bds_dnav_iono_model", d_internal_pvt_solver->beidou_dnav_iono);
LOG(INFO) << "Saved BeiDou DNAV ionospheric model parameters";
}
catch (const boost::archive::archive_exception& e)
{
LOG(WARNING) << e.what();
}
catch (const std::ofstream::failure& e)
{
LOG(WARNING) << "Problem opening output XML file";
}
catch (const std::exception& e)
{
LOG(WARNING) << e.what();
}
}
else
{
LOG(INFO) << "Failed to save BeiDou DNAV ionospheric model parameters, not valid data";
}
// save BeiDou DNAV almanac to XML file
file_name = d_xml_base_path + "bds_dnav_almanac.xml";
if (d_internal_pvt_solver->beidou_dnav_almanac_map.empty() == false)
{
std::ofstream ofs;
try
{
ofs.open(file_name.c_str(), std::ofstream::trunc | std::ofstream::out);
boost::archive::xml_oarchive xml(ofs);
xml << boost::serialization::make_nvp("GNSS-SDR_bds_dnav_almanac_map", d_internal_pvt_solver->beidou_dnav_almanac_map);
LOG(INFO) << "Saved BeiDou DNAV almanac map data";
}
catch (const boost::archive::archive_exception& e)
{
LOG(WARNING) << e.what();
}
catch (const std::ofstream::failure& e)
{
LOG(WARNING) << "Problem opening output XML file";
}
catch (const std::exception& e)
{
LOG(WARNING) << e.what();
}
}
else
{
LOG(INFO) << "Failed to save BeiDou DNAV almanac, map is empty";
}
// Save BeiDou UTC model parameters
file_name = d_xml_base_path + "bds_dnav_utc_model.xml";
if (d_internal_pvt_solver->beidou_dnav_utc_model.valid)
{
std::ofstream ofs;
try
{
ofs.open(file_name.c_str(), std::ofstream::trunc | std::ofstream::out);
boost::archive::xml_oarchive xml(ofs);
xml << boost::serialization::make_nvp("GNSS-SDR_bds_dnav_utc_model", d_internal_pvt_solver->beidou_dnav_utc_model);
LOG(INFO) << "Saved BeiDou DNAV UTC model parameters";
}
catch (const boost::archive::archive_exception& e)
{
LOG(WARNING) << e.what();
}
catch (const std::ofstream::failure& e)
{
LOG(WARNING) << "Problem opening output XML file";
}
catch (const std::exception& e)
{
LOG(WARNING) << e.what();
}
}
else
{
LOG(INFO) << "Failed to save BeiDou DNAV UTC model parameters, not valid data";
}
}
}
catch (std::length_error& e)
{
LOG(WARNING) << e.what();
}
}
void rtklib_pvt_gs::msg_handler_telemetry(const pmt::pmt_t& msg)
{
try
{
const size_t msg_type_hash_code = pmt::any_ref(msg).type().hash_code();
// ************************* GPS telemetry *************************
if (msg_type_hash_code == d_gps_ephemeris_sptr_type_hash_code)
{
// ### GPS EPHEMERIS ###
const auto gps_eph = boost::any_cast<std::shared_ptr<Gps_Ephemeris>>(pmt::any_ref(msg));
DLOG(INFO) << "Ephemeris record has arrived from SAT ID "
<< gps_eph->i_satellite_PRN << " (Block "
<< gps_eph->satelliteBlock[gps_eph->i_satellite_PRN] << ")"
<< "inserted with Toe=" << gps_eph->d_Toe << " and GPS Week="
<< gps_eph->i_GPS_week;
// update/insert new ephemeris record to the global ephemeris map
if (d_rp->is_rinex_header_written()) // The header is already written, we can now log the navigation message data
{
bool new_annotation = false;
if (d_internal_pvt_solver->gps_ephemeris_map.find(gps_eph->i_satellite_PRN) == d_internal_pvt_solver->gps_ephemeris_map.cend())
{
new_annotation = true;
}
else
{
if (d_internal_pvt_solver->gps_ephemeris_map[gps_eph->i_satellite_PRN].d_Toe != gps_eph->d_Toe)
{
new_annotation = true;
}
}
if (new_annotation == true)
{
// New record!
std::map<int32_t, Gps_Ephemeris> new_eph;
new_eph[gps_eph->i_satellite_PRN] = *gps_eph;
d_rp->log_rinex_nav_gps_nav(d_type_of_rx, new_eph);
}
}
d_internal_pvt_solver->gps_ephemeris_map[gps_eph->i_satellite_PRN] = *gps_eph;
if (d_enable_rx_clock_correction == true)
{
d_user_pvt_solver->gps_ephemeris_map[gps_eph->i_satellite_PRN] = *gps_eph;
}
}
else if (msg_type_hash_code == d_gps_iono_sptr_type_hash_code)
{
// ### GPS IONO ###
const auto gps_iono = boost::any_cast<std::shared_ptr<Gps_Iono>>(pmt::any_ref(msg));
d_internal_pvt_solver->gps_iono = *gps_iono;
if (d_enable_rx_clock_correction == true)
{
d_user_pvt_solver->gps_iono = *gps_iono;
}
DLOG(INFO) << "New IONO record has arrived ";
}
else if (msg_type_hash_code == d_gps_utc_model_sptr_type_hash_code)
{
// ### GPS UTC MODEL ###
const auto gps_utc_model = boost::any_cast<std::shared_ptr<Gps_Utc_Model>>(pmt::any_ref(msg));
d_internal_pvt_solver->gps_utc_model = *gps_utc_model;
if (d_enable_rx_clock_correction == true)
{
d_user_pvt_solver->gps_utc_model = *gps_utc_model;
}
DLOG(INFO) << "New UTC record has arrived ";
}
else if (msg_type_hash_code == d_gps_cnav_ephemeris_sptr_type_hash_code)
{
// ### GPS CNAV message ###
const auto gps_cnav_ephemeris = boost::any_cast<std::shared_ptr<Gps_CNAV_Ephemeris>>(pmt::any_ref(msg));
// update/insert new ephemeris record to the global ephemeris map
if (d_rp->is_rinex_header_written()) // The header is already written, we can now log the navigation message data
{
bool new_annotation = false;
if (d_internal_pvt_solver->gps_cnav_ephemeris_map.find(gps_cnav_ephemeris->i_satellite_PRN) == d_internal_pvt_solver->gps_cnav_ephemeris_map.cend())
{
new_annotation = true;
}
else
{
if (d_internal_pvt_solver->gps_cnav_ephemeris_map[gps_cnav_ephemeris->i_satellite_PRN].d_Toe1 != gps_cnav_ephemeris->d_Toe1)
{
new_annotation = true;
}
}
if (new_annotation == true)
{
// New record!
std::map<int32_t, Gps_CNAV_Ephemeris> new_cnav_eph;
new_cnav_eph[gps_cnav_ephemeris->i_satellite_PRN] = *gps_cnav_ephemeris;
d_rp->log_rinex_nav_gps_cnav(d_type_of_rx, new_cnav_eph);
}
}
d_internal_pvt_solver->gps_cnav_ephemeris_map[gps_cnav_ephemeris->i_satellite_PRN] = *gps_cnav_ephemeris;
if (d_enable_rx_clock_correction == true)
{
d_user_pvt_solver->gps_cnav_ephemeris_map[gps_cnav_ephemeris->i_satellite_PRN] = *gps_cnav_ephemeris;
}
DLOG(INFO) << "New GPS CNAV ephemeris record has arrived ";
}
else if (msg_type_hash_code == d_gps_cnav_iono_sptr_type_hash_code)
{
// ### GPS CNAV IONO ###
const auto gps_cnav_iono = boost::any_cast<std::shared_ptr<Gps_CNAV_Iono>>(pmt::any_ref(msg));
d_internal_pvt_solver->gps_cnav_iono = *gps_cnav_iono;
if (d_enable_rx_clock_correction == true)
{
d_user_pvt_solver->gps_cnav_iono = *gps_cnav_iono;
}
DLOG(INFO) << "New CNAV IONO record has arrived ";
}
else if (msg_type_hash_code == d_gps_cnav_utc_model_sptr_type_hash_code)
{
// ### GPS CNAV UTC MODEL ###
const auto gps_cnav_utc_model = boost::any_cast<std::shared_ptr<Gps_CNAV_Utc_Model>>(pmt::any_ref(msg));
d_internal_pvt_solver->gps_cnav_utc_model = *gps_cnav_utc_model;
{
d_user_pvt_solver->gps_cnav_utc_model = *gps_cnav_utc_model;
}
DLOG(INFO) << "New CNAV UTC record has arrived ";
}
else if (msg_type_hash_code == d_gps_almanac_sptr_type_hash_code)
{
// ### GPS ALMANAC ###
const auto gps_almanac = boost::any_cast<std::shared_ptr<Gps_Almanac>>(pmt::any_ref(msg));
d_internal_pvt_solver->gps_almanac_map[gps_almanac->i_satellite_PRN] = *gps_almanac;
if (d_enable_rx_clock_correction == true)
{
d_user_pvt_solver->gps_almanac_map[gps_almanac->i_satellite_PRN] = *gps_almanac;
}
DLOG(INFO) << "New GPS almanac record has arrived ";
}
// *********************** Galileo telemetry ***********************
else if (msg_type_hash_code == d_galileo_ephemeris_sptr_type_hash_code)
{
// ### Galileo EPHEMERIS ###
const auto galileo_eph = boost::any_cast<std::shared_ptr<Galileo_Ephemeris>>(pmt::any_ref(msg));
// insert new ephemeris record
DLOG(INFO) << "Galileo New Ephemeris record inserted in global map with TOW =" << galileo_eph->TOW_5
<< ", GALILEO Week Number =" << galileo_eph->WN_5
<< " and Ephemeris IOD = " << galileo_eph->IOD_ephemeris;
// update/insert new ephemeris record to the global ephemeris map
if (d_rp->is_rinex_header_written()) // The header is already written, we can now log the navigation message data
{
bool new_annotation = false;
if (d_internal_pvt_solver->galileo_ephemeris_map.find(galileo_eph->i_satellite_PRN) == d_internal_pvt_solver->galileo_ephemeris_map.cend())
{
new_annotation = true;
}
else
{
if (d_internal_pvt_solver->galileo_ephemeris_map[galileo_eph->i_satellite_PRN].t0e_1 != galileo_eph->t0e_1)
{
new_annotation = true;
}
}
if (new_annotation == true)
{
// New record!
std::map<int32_t, Galileo_Ephemeris> new_gal_eph;
new_gal_eph[galileo_eph->i_satellite_PRN] = *galileo_eph;
d_rp->log_rinex_nav_gal_nav(d_type_of_rx, new_gal_eph);
}
}
d_internal_pvt_solver->galileo_ephemeris_map[galileo_eph->i_satellite_PRN] = *galileo_eph;
if (d_enable_rx_clock_correction == true)
{
d_user_pvt_solver->galileo_ephemeris_map[galileo_eph->i_satellite_PRN] = *galileo_eph;
}
}
else if (msg_type_hash_code == d_galileo_iono_sptr_type_hash_code)
{
// ### Galileo IONO ###
const auto galileo_iono = boost::any_cast<std::shared_ptr<Galileo_Iono>>(pmt::any_ref(msg));
d_internal_pvt_solver->galileo_iono = *galileo_iono;
if (d_enable_rx_clock_correction == true)
{
d_user_pvt_solver->galileo_iono = *galileo_iono;
}
DLOG(INFO) << "New IONO record has arrived ";
}
else if (msg_type_hash_code == d_galileo_utc_model_sptr_type_hash_code)
{
// ### Galileo UTC MODEL ###
const auto galileo_utc_model = boost::any_cast<std::shared_ptr<Galileo_Utc_Model>>(pmt::any_ref(msg));
d_internal_pvt_solver->galileo_utc_model = *galileo_utc_model;
if (d_enable_rx_clock_correction == true)
{
d_user_pvt_solver->galileo_utc_model = *galileo_utc_model;
}
DLOG(INFO) << "New UTC record has arrived ";
}
else if (msg_type_hash_code == d_galileo_almanac_helper_sptr_type_hash_code)
{
// ### Galileo Almanac ###
const auto galileo_almanac_helper = boost::any_cast<std::shared_ptr<Galileo_Almanac_Helper>>(pmt::any_ref(msg));
const Galileo_Almanac sv1 = galileo_almanac_helper->get_almanac(1);
const Galileo_Almanac sv2 = galileo_almanac_helper->get_almanac(2);
const Galileo_Almanac sv3 = galileo_almanac_helper->get_almanac(3);
if (sv1.i_satellite_PRN != 0)
{
d_internal_pvt_solver->galileo_almanac_map[sv1.i_satellite_PRN] = sv1;
if (d_enable_rx_clock_correction == true)
{
d_user_pvt_solver->galileo_almanac_map[sv1.i_satellite_PRN] = sv1;
}
}
if (sv2.i_satellite_PRN != 0)
{
d_internal_pvt_solver->galileo_almanac_map[sv2.i_satellite_PRN] = sv2;
if (d_enable_rx_clock_correction == true)
{
d_user_pvt_solver->galileo_almanac_map[sv2.i_satellite_PRN] = sv2;
}
}
if (sv3.i_satellite_PRN != 0)
{
d_internal_pvt_solver->galileo_almanac_map[sv3.i_satellite_PRN] = sv3;
if (d_enable_rx_clock_correction == true)
{
d_user_pvt_solver->galileo_almanac_map[sv3.i_satellite_PRN] = sv3;
}
}
DLOG(INFO) << "New Galileo Almanac data have arrived ";
}
else if (msg_type_hash_code == d_galileo_almanac_sptr_type_hash_code)
{
// ### Galileo Almanac ###
const auto galileo_alm = boost::any_cast<std::shared_ptr<Galileo_Almanac>>(pmt::any_ref(msg));
// update/insert new almanac record to the global almanac map
d_internal_pvt_solver->galileo_almanac_map[galileo_alm->i_satellite_PRN] = *galileo_alm;
if (d_enable_rx_clock_correction == true)
{
d_user_pvt_solver->galileo_almanac_map[galileo_alm->i_satellite_PRN] = *galileo_alm;
}
}
// **************** GLONASS GNAV Telemetry *************************
else if (msg_type_hash_code == d_glonass_gnav_ephemeris_sptr_type_hash_code)
{
// ### GLONASS GNAV EPHEMERIS ###
const auto glonass_gnav_eph = boost::any_cast<std::shared_ptr<Glonass_Gnav_Ephemeris>>(pmt::any_ref(msg));
// TODO Add GLONASS with gps week number and tow,
// insert new ephemeris record
DLOG(INFO) << "GLONASS GNAV New Ephemeris record inserted in global map with TOW =" << glonass_gnav_eph->d_TOW
<< ", Week Number =" << glonass_gnav_eph->d_WN
<< " and Ephemeris IOD in UTC = " << glonass_gnav_eph->compute_GLONASS_time(glonass_gnav_eph->d_t_b)
<< " from SV = " << glonass_gnav_eph->i_satellite_slot_number;
// update/insert new ephemeris record to the global ephemeris map
if (d_rp->is_rinex_header_written()) // The header is already written, we can now log the navigation message data
{
bool new_annotation = false;
if (d_internal_pvt_solver->glonass_gnav_ephemeris_map.find(glonass_gnav_eph->i_satellite_PRN) == d_internal_pvt_solver->glonass_gnav_ephemeris_map.cend())
{
new_annotation = true;
}
else
{
if (d_internal_pvt_solver->glonass_gnav_ephemeris_map[glonass_gnav_eph->i_satellite_PRN].d_t_b != glonass_gnav_eph->d_t_b)
{
new_annotation = true;
}
}
if (new_annotation == true)
{
// New record!
std::map<int32_t, Glonass_Gnav_Ephemeris> new_glo_eph;
new_glo_eph[glonass_gnav_eph->i_satellite_PRN] = *glonass_gnav_eph;
d_rp->log_rinex_nav_glo_gnav(d_type_of_rx, new_glo_eph);
}
}
d_internal_pvt_solver->glonass_gnav_ephemeris_map[glonass_gnav_eph->i_satellite_PRN] = *glonass_gnav_eph;
if (d_enable_rx_clock_correction == true)
{
d_user_pvt_solver->glonass_gnav_ephemeris_map[glonass_gnav_eph->i_satellite_PRN] = *glonass_gnav_eph;
}
}
else if (msg_type_hash_code == d_glonass_gnav_utc_model_sptr_type_hash_code)
{
// ### GLONASS GNAV UTC MODEL ###
const auto glonass_gnav_utc_model = boost::any_cast<std::shared_ptr<Glonass_Gnav_Utc_Model>>(pmt::any_ref(msg));
d_internal_pvt_solver->glonass_gnav_utc_model = *glonass_gnav_utc_model;
if (d_enable_rx_clock_correction == true)
{
d_user_pvt_solver->glonass_gnav_utc_model = *glonass_gnav_utc_model;
}
DLOG(INFO) << "New GLONASS GNAV UTC record has arrived ";
}
else if (msg_type_hash_code == d_glonass_gnav_almanac_sptr_type_hash_code)
{
// ### GLONASS GNAV Almanac ###
const auto glonass_gnav_almanac = boost::any_cast<std::shared_ptr<Glonass_Gnav_Almanac>>(pmt::any_ref(msg));
d_internal_pvt_solver->glonass_gnav_almanac = *glonass_gnav_almanac;
if (d_enable_rx_clock_correction == true)
{
d_user_pvt_solver->glonass_gnav_almanac = *glonass_gnav_almanac;
}
DLOG(INFO) << "New GLONASS GNAV Almanac has arrived "
<< ", GLONASS GNAV Slot Number =" << glonass_gnav_almanac->d_n_A;
}
// *********************** BeiDou telemetry ************************
else if (msg_type_hash_code == d_beidou_dnav_ephemeris_sptr_type_hash_code)
{
// ### Beidou EPHEMERIS ###
const auto bds_dnav_eph = boost::any_cast<std::shared_ptr<Beidou_Dnav_Ephemeris>>(pmt::any_ref(msg));
DLOG(INFO) << "Ephemeris record has arrived from SAT ID "
<< bds_dnav_eph->i_satellite_PRN << " (Block "
<< bds_dnav_eph->satelliteBlock[bds_dnav_eph->i_satellite_PRN] << ")"
<< "inserted with Toe=" << bds_dnav_eph->d_Toe << " and BDS Week="
<< bds_dnav_eph->i_BEIDOU_week;
// update/insert new ephemeris record to the global ephemeris map
if (d_rp->is_rinex_header_written()) // The header is already written, we can now log the navigation message data
{
bool new_annotation = false;
if (d_internal_pvt_solver->beidou_dnav_ephemeris_map.find(bds_dnav_eph->i_satellite_PRN) == d_internal_pvt_solver->beidou_dnav_ephemeris_map.cend())
{
new_annotation = true;
}
else
{
if (d_internal_pvt_solver->beidou_dnav_ephemeris_map[bds_dnav_eph->i_satellite_PRN].d_Toc != bds_dnav_eph->d_Toc)
{
new_annotation = true;
}
}
if (new_annotation == true)
{
// New record!
std::map<int32_t, Beidou_Dnav_Ephemeris> new_bds_eph;
new_bds_eph[bds_dnav_eph->i_satellite_PRN] = *bds_dnav_eph;
d_rp->log_rinex_nav_bds_dnav(d_type_of_rx, new_bds_eph);
}
}
d_internal_pvt_solver->beidou_dnav_ephemeris_map[bds_dnav_eph->i_satellite_PRN] = *bds_dnav_eph;
if (d_enable_rx_clock_correction == true)
{
d_user_pvt_solver->beidou_dnav_ephemeris_map[bds_dnav_eph->i_satellite_PRN] = *bds_dnav_eph;
}
}
else if (msg_type_hash_code == d_beidou_dnav_iono_sptr_type_hash_code)
{
// ### BeiDou IONO ###
const auto bds_dnav_iono = boost::any_cast<std::shared_ptr<Beidou_Dnav_Iono>>(pmt::any_ref(msg));
d_internal_pvt_solver->beidou_dnav_iono = *bds_dnav_iono;
if (d_enable_rx_clock_correction == true)
{
d_user_pvt_solver->beidou_dnav_iono = *bds_dnav_iono;
}
DLOG(INFO) << "New BeiDou DNAV IONO record has arrived ";
}
else if (msg_type_hash_code == d_beidou_dnav_utc_model_sptr_type_hash_code)
{
// ### BeiDou UTC MODEL ###
const auto bds_dnav_utc_model = boost::any_cast<std::shared_ptr<Beidou_Dnav_Utc_Model>>(pmt::any_ref(msg));
d_internal_pvt_solver->beidou_dnav_utc_model = *bds_dnav_utc_model;
if (d_enable_rx_clock_correction == true)
{
d_user_pvt_solver->beidou_dnav_utc_model = *bds_dnav_utc_model;
}
DLOG(INFO) << "New BeiDou DNAV UTC record has arrived ";
}
else if (msg_type_hash_code == d_beidou_dnav_almanac_sptr_type_hash_code)
{
// ### BeiDou ALMANAC ###
const auto bds_dnav_almanac = boost::any_cast<std::shared_ptr<Beidou_Dnav_Almanac>>(pmt::any_ref(msg));
d_internal_pvt_solver->beidou_dnav_almanac_map[bds_dnav_almanac->i_satellite_PRN] = *bds_dnav_almanac;
if (d_enable_rx_clock_correction == true)
{
d_user_pvt_solver->beidou_dnav_almanac_map[bds_dnav_almanac->i_satellite_PRN] = *bds_dnav_almanac;
}
DLOG(INFO) << "New BeiDou DNAV almanac record has arrived ";
}
else
{
LOG(WARNING) << "msg_handler_telemetry unknown object type!";
}
}
catch (const boost::bad_any_cast& e)
{
LOG(WARNING) << "msg_handler_telemetry Bad any_cast: " << e.what();
}
}
std::map<int, Gps_Ephemeris> rtklib_pvt_gs::get_gps_ephemeris_map() const
{
return d_internal_pvt_solver->gps_ephemeris_map;
}
std::map<int, Gps_Almanac> rtklib_pvt_gs::get_gps_almanac_map() const
{
return d_internal_pvt_solver->gps_almanac_map;
}
std::map<int, Galileo_Ephemeris> rtklib_pvt_gs::get_galileo_ephemeris_map() const
{
return d_internal_pvt_solver->galileo_ephemeris_map;
}
std::map<int, Galileo_Almanac> rtklib_pvt_gs::get_galileo_almanac_map() const
{
return d_internal_pvt_solver->galileo_almanac_map;
}
std::map<int, Beidou_Dnav_Ephemeris> rtklib_pvt_gs::get_beidou_dnav_ephemeris_map() const
{
return d_internal_pvt_solver->beidou_dnav_ephemeris_map;
}
std::map<int, Beidou_Dnav_Almanac> rtklib_pvt_gs::get_beidou_dnav_almanac_map() const
{
return d_internal_pvt_solver->beidou_dnav_almanac_map;
}
void rtklib_pvt_gs::clear_ephemeris()
{
d_internal_pvt_solver->gps_ephemeris_map.clear();
d_internal_pvt_solver->gps_almanac_map.clear();
d_internal_pvt_solver->galileo_ephemeris_map.clear();
d_internal_pvt_solver->galileo_almanac_map.clear();
d_internal_pvt_solver->beidou_dnav_ephemeris_map.clear();
d_internal_pvt_solver->beidou_dnav_almanac_map.clear();
if (d_enable_rx_clock_correction == true)
{
d_user_pvt_solver->gps_ephemeris_map.clear();
d_user_pvt_solver->gps_almanac_map.clear();
d_user_pvt_solver->galileo_ephemeris_map.clear();
d_user_pvt_solver->galileo_almanac_map.clear();
d_user_pvt_solver->beidou_dnav_ephemeris_map.clear();
d_user_pvt_solver->beidou_dnav_almanac_map.clear();
}
}
bool rtklib_pvt_gs::send_sys_v_ttff_msg(d_ttff_msgbuf ttff)
{
if (d_sysv_msqid != -1)
{
// Fill Sys V message structures
int msgsend_size;
d_ttff_msgbuf msg;
msg.ttff = ttff.ttff;
msgsend_size = sizeof(msg.ttff);
msg.mtype = 1; // default message ID
// SEND SOLUTION OVER A MESSAGE QUEUE
// non-blocking Sys V message send
msgsnd(d_sysv_msqid, &msg, msgsend_size, IPC_NOWAIT);
return true;
}
return false;
}
bool rtklib_pvt_gs::save_gnss_synchro_map_xml(const std::string& file_name)
{
if (d_gnss_observables_map.empty() == false)
{
std::ofstream ofs;
try
{
ofs.open(file_name.c_str(), std::ofstream::trunc | std::ofstream::out);
boost::archive::xml_oarchive xml(ofs);
xml << boost::serialization::make_nvp("GNSS-SDR_gnss_synchro_map", d_gnss_observables_map);
LOG(INFO) << "Saved gnss_sychro map data";
}
catch (const std::exception& e)
{
LOG(WARNING) << e.what();
return false;
}
return true;
}
LOG(WARNING) << "Failed to save gnss_synchro, map is empty";
return false;
}
bool rtklib_pvt_gs::load_gnss_synchro_map_xml(const std::string& file_name)
{
// load from xml (boost serialize)
std::ifstream ifs;
try
{
ifs.open(file_name.c_str(), std::ifstream::binary | std::ifstream::in);
boost::archive::xml_iarchive xml(ifs);
d_gnss_observables_map.clear();
xml >> boost::serialization::make_nvp("GNSS-SDR_gnss_synchro_map", d_gnss_observables_map);
// std::cout << "Loaded gnss_synchro map data with " << gnss_synchro_map.size() << " pseudoranges\n";
}
catch (const std::exception& e)
{
std::cout << e.what() << "File: " << file_name;
return false;
}
return true;
}
std::vector<std::string> rtklib_pvt_gs::split_string(const std::string& s, char delim) const
{
std::vector<std::string> v;
std::stringstream ss(s);
std::string item;
while (std::getline(ss, item, delim))
{
*(std::back_inserter(v)++) = item;
}
return v;
}
bool rtklib_pvt_gs::get_latest_PVT(double* longitude_deg,
double* latitude_deg,
double* height_m,
double* ground_speed_kmh,
double* course_over_ground_deg,
time_t* UTC_time) const
{
if (d_enable_rx_clock_correction == true)
{
if (d_user_pvt_solver->is_valid_position())
{
*latitude_deg = d_user_pvt_solver->get_latitude();
*longitude_deg = d_user_pvt_solver->get_longitude();
*height_m = d_user_pvt_solver->get_height();
*ground_speed_kmh = d_user_pvt_solver->get_speed_over_ground() * 3600.0 / 1000.0;
*course_over_ground_deg = d_user_pvt_solver->get_course_over_ground();
*UTC_time = convert_to_time_t(d_user_pvt_solver->get_position_UTC_time());
return true;
}
}
else
{
if (d_internal_pvt_solver->is_valid_position())
{
*latitude_deg = d_internal_pvt_solver->get_latitude();
*longitude_deg = d_internal_pvt_solver->get_longitude();
*height_m = d_internal_pvt_solver->get_height();
*ground_speed_kmh = d_internal_pvt_solver->get_speed_over_ground() * 3600.0 / 1000.0;
*course_over_ground_deg = d_internal_pvt_solver->get_course_over_ground();
*UTC_time = convert_to_time_t(d_internal_pvt_solver->get_position_UTC_time());
return true;
}
}
return false;
}
void rtklib_pvt_gs::apply_rx_clock_offset(std::map<int, Gnss_Synchro>& observables_map,
double rx_clock_offset_s)
{
// apply corrections according to Rinex 3.04, Table 1: Observation Corrections for Receiver Clock Offset
std::map<int, Gnss_Synchro>::iterator observables_iter;
for (observables_iter = observables_map.begin(); observables_iter != observables_map.end(); observables_iter++)
{
// all observables in the map are valid
observables_iter->second.RX_time -= rx_clock_offset_s;
observables_iter->second.Pseudorange_m -= rx_clock_offset_s * SPEED_OF_LIGHT_M_S;
switch (d_mapStringValues[observables_iter->second.Signal])
{
case evGPS_1C:
case evSBAS_1C:
case evGAL_1B:
observables_iter->second.Carrier_phase_rads -= rx_clock_offset_s * FREQ1 * TWO_PI;
break;
case evGPS_L5:
case evGAL_5X:
observables_iter->second.Carrier_phase_rads -= rx_clock_offset_s * FREQ5 * TWO_PI;
break;
case evGAL_E6:
observables_iter->second.Carrier_phase_rads -= rx_clock_offset_s * FREQ6 * TWO_PI;
break;
case evGAL_7X:
observables_iter->second.Carrier_phase_rads -= rx_clock_offset_s * FREQ7 * TWO_PI;
break;
case evGPS_2S:
observables_iter->second.Carrier_phase_rads -= rx_clock_offset_s * FREQ2 * TWO_PI;
break;
case evBDS_B3:
observables_iter->second.Carrier_phase_rads -= rx_clock_offset_s * FREQ3_BDS * TWO_PI;
break;
case evGLO_1G:
observables_iter->second.Carrier_phase_rads -= rx_clock_offset_s * FREQ1_GLO * TWO_PI;
break;
case evGLO_2G:
observables_iter->second.Carrier_phase_rads -= rx_clock_offset_s * FREQ2_GLO * TWO_PI;
break;
case evBDS_B1:
observables_iter->second.Carrier_phase_rads -= rx_clock_offset_s * FREQ1_BDS * TWO_PI;
break;
case evBDS_B2:
observables_iter->second.Carrier_phase_rads -= rx_clock_offset_s * FREQ2_BDS * TWO_PI;
break;
default:
break;
}
}
}
std::map<int, Gnss_Synchro> rtklib_pvt_gs::interpolate_observables(const std::map<int, Gnss_Synchro>& observables_map_t0,
const std::map<int, Gnss_Synchro>& observables_map_t1,
double rx_time_s)
{
std::map<int, Gnss_Synchro> interp_observables_map;
// Linear interpolation: y(t) = y(t0) + (y(t1) - y(t0)) * (t - t0) / (t1 - t0)
// check TOW rollover
double time_factor;
if ((observables_map_t1.cbegin()->second.RX_time -
observables_map_t0.cbegin()->second.RX_time) > 0)
{
time_factor = (rx_time_s - observables_map_t0.cbegin()->second.RX_time) /
(observables_map_t1.cbegin()->second.RX_time -
observables_map_t0.cbegin()->second.RX_time);
}
else
{
// TOW rollover situation
time_factor = (604800000.0 + rx_time_s - observables_map_t0.cbegin()->second.RX_time) /
(604800000.0 + observables_map_t1.cbegin()->second.RX_time -
observables_map_t0.cbegin()->second.RX_time);
}
std::map<int, Gnss_Synchro>::const_iterator observables_iter;
for (observables_iter = observables_map_t0.cbegin(); observables_iter != observables_map_t0.cend(); observables_iter++)
{
// 1. Check if the observable exist in t0 and t1
// the map key is the channel ID (see work())
try
{
if (observables_map_t1.at(observables_iter->first).PRN == observables_iter->second.PRN)
{
interp_observables_map.insert(std::pair<int, Gnss_Synchro>(observables_iter->first, observables_iter->second));
interp_observables_map.at(observables_iter->first).RX_time = rx_time_s; // interpolation point
interp_observables_map.at(observables_iter->first).Pseudorange_m += (observables_map_t1.at(observables_iter->first).Pseudorange_m - observables_iter->second.Pseudorange_m) * time_factor;
interp_observables_map.at(observables_iter->first).Carrier_phase_rads += (observables_map_t1.at(observables_iter->first).Carrier_phase_rads - observables_iter->second.Carrier_phase_rads) * time_factor;
interp_observables_map.at(observables_iter->first).Carrier_Doppler_hz += (observables_map_t1.at(observables_iter->first).Carrier_Doppler_hz - observables_iter->second.Carrier_Doppler_hz) * time_factor;
}
}
catch (const std::out_of_range& oor)
{
// observable does not exist in t1
}
}
return interp_observables_map;
}
void rtklib_pvt_gs::initialize_and_apply_carrier_phase_offset()
{
// we have a valid PVT. First check if we need to reset the initial carrier phase offsets to match their pseudoranges
std::map<int, Gnss_Synchro>::iterator observables_iter;
for (observables_iter = d_gnss_observables_map.begin(); observables_iter != d_gnss_observables_map.end(); observables_iter++)
{
// check if an initialization is required (new satellite or loss of lock)
// it is set to false by the work function if the gnss_synchro is not valid
if (d_channel_initialized.at(observables_iter->second.Channel_ID) == false)
{
double wavelength_m = 0;
switch (d_mapStringValues[observables_iter->second.Signal])
{
case evGPS_1C:
case evSBAS_1C:
case evGAL_1B:
wavelength_m = SPEED_OF_LIGHT_M_S / FREQ1;
break;
case evGPS_L5:
case evGAL_5X:
wavelength_m = SPEED_OF_LIGHT_M_S / FREQ5;
break;
case evGAL_E6:
wavelength_m = SPEED_OF_LIGHT_M_S / FREQ6;
break;
case evGAL_7X:
wavelength_m = SPEED_OF_LIGHT_M_S / FREQ7;
break;
case evGPS_2S:
wavelength_m = SPEED_OF_LIGHT_M_S / FREQ2;
break;
case evBDS_B3:
wavelength_m = SPEED_OF_LIGHT_M_S / FREQ3_BDS;
break;
case evGLO_1G:
wavelength_m = SPEED_OF_LIGHT_M_S / FREQ1_GLO;
break;
case evGLO_2G:
wavelength_m = SPEED_OF_LIGHT_M_S / FREQ2_GLO;
break;
case evBDS_B1:
wavelength_m = SPEED_OF_LIGHT_M_S / FREQ1_BDS;
break;
case evBDS_B2:
wavelength_m = SPEED_OF_LIGHT_M_S / FREQ2_BDS;
break;
default:
break;
}
const double wrap_carrier_phase_rad = fmod(observables_iter->second.Carrier_phase_rads, TWO_PI);
d_initial_carrier_phase_offset_estimation_rads.at(observables_iter->second.Channel_ID) = TWO_PI * round(observables_iter->second.Pseudorange_m / wavelength_m) - observables_iter->second.Carrier_phase_rads + wrap_carrier_phase_rad;
d_channel_initialized.at(observables_iter->second.Channel_ID) = true;
DLOG(INFO) << "initialized carrier phase at channel " << observables_iter->second.Channel_ID;
}
// apply the carrier phase offset to this satellite
observables_iter->second.Carrier_phase_rads = observables_iter->second.Carrier_phase_rads + d_initial_carrier_phase_offset_estimation_rads.at(observables_iter->second.Channel_ID);
}
}
int rtklib_pvt_gs::work(int noutput_items, gr_vector_const_void_star& input_items,
gr_vector_void_star& output_items __attribute__((unused)))
{
for (int32_t epoch = 0; epoch < noutput_items; epoch++)
{
bool flag_display_pvt = false;
bool flag_compute_pvt_output = false;
bool flag_write_RTCM_1019_output = false;
bool flag_write_RTCM_1020_output = false;
bool flag_write_RTCM_1045_output = false;
bool flag_write_RTCM_MSM_output = false;
bool flag_write_RINEX_obs_output = false;
d_gnss_observables_map.clear();
const auto** in = reinterpret_cast<const Gnss_Synchro**>(&input_items[0]); // Get the input buffer pointer
// ############ 1. READ PSEUDORANGES ####
for (uint32_t i = 0; i < d_nchannels; i++)
{
if (in[i][epoch].Flag_valid_pseudorange)
{
const auto tmp_eph_iter_gps = d_internal_pvt_solver->gps_ephemeris_map.find(in[i][epoch].PRN);
const auto tmp_eph_iter_gal = d_internal_pvt_solver->galileo_ephemeris_map.find(in[i][epoch].PRN);
const auto tmp_eph_iter_cnav = d_internal_pvt_solver->gps_cnav_ephemeris_map.find(in[i][epoch].PRN);
const auto tmp_eph_iter_glo_gnav = d_internal_pvt_solver->glonass_gnav_ephemeris_map.find(in[i][epoch].PRN);
const auto tmp_eph_iter_bds_dnav = d_internal_pvt_solver->beidou_dnav_ephemeris_map.find(in[i][epoch].PRN);
bool store_valid_observable = false;
if (tmp_eph_iter_gps != d_internal_pvt_solver->gps_ephemeris_map.cend())
{
const uint32_t prn_aux = tmp_eph_iter_gps->second.i_satellite_PRN;
if ((prn_aux == in[i][epoch].PRN) and (std::string(in[i][epoch].Signal) == "1C"))
{
store_valid_observable = true;
}
}
if (tmp_eph_iter_gal != d_internal_pvt_solver->galileo_ephemeris_map.cend())
{
const uint32_t prn_aux = tmp_eph_iter_gal->second.i_satellite_PRN;
if ((prn_aux == in[i][epoch].PRN) and ((std::string(in[i][epoch].Signal) == "1B") or (std::string(in[i][epoch].Signal) == "5X") or (std::string(in[i][epoch].Signal) == "7X")))
{
store_valid_observable = true;
}
}
if (tmp_eph_iter_cnav != d_internal_pvt_solver->gps_cnav_ephemeris_map.cend())
{
const uint32_t prn_aux = tmp_eph_iter_cnav->second.i_satellite_PRN;
if ((prn_aux == in[i][epoch].PRN) and ((std::string(in[i][epoch].Signal) == "2S") or (std::string(in[i][epoch].Signal) == "L5")))
{
store_valid_observable = true;
}
}
if (tmp_eph_iter_glo_gnav != d_internal_pvt_solver->glonass_gnav_ephemeris_map.cend())
{
const uint32_t prn_aux = tmp_eph_iter_glo_gnav->second.i_satellite_PRN;
if ((prn_aux == in[i][epoch].PRN) and ((std::string(in[i][epoch].Signal) == "1G") or (std::string(in[i][epoch].Signal) == "2G")))
{
store_valid_observable = true;
}
}
if (tmp_eph_iter_bds_dnav != d_internal_pvt_solver->beidou_dnav_ephemeris_map.cend())
{
const uint32_t prn_aux = tmp_eph_iter_bds_dnav->second.i_satellite_PRN;
if ((prn_aux == in[i][epoch].PRN) and ((std::string(in[i][epoch].Signal) == "B1") or (std::string(in[i][epoch].Signal) == "B3")))
{
store_valid_observable = true;
}
}
if (store_valid_observable)
{
// store valid observables in a map.
d_gnss_observables_map.insert(std::pair<int, Gnss_Synchro>(i, in[i][epoch]));
}
if (d_rtcm_enabled)
{
try
{
if (d_internal_pvt_solver->gps_ephemeris_map.empty() == false)
{
if (tmp_eph_iter_gps != d_internal_pvt_solver->gps_ephemeris_map.cend())
{
d_rtcm_printer->lock_time(d_internal_pvt_solver->gps_ephemeris_map.find(in[i][epoch].PRN)->second, in[i][epoch].RX_time, in[i][epoch]); // keep track of locking time
}
}
if (d_internal_pvt_solver->galileo_ephemeris_map.empty() == false)
{
if (tmp_eph_iter_gal != d_internal_pvt_solver->galileo_ephemeris_map.cend())
{
d_rtcm_printer->lock_time(d_internal_pvt_solver->galileo_ephemeris_map.find(in[i][epoch].PRN)->second, in[i][epoch].RX_time, in[i][epoch]); // keep track of locking time
}
}
if (d_internal_pvt_solver->gps_cnav_ephemeris_map.empty() == false)
{
if (tmp_eph_iter_cnav != d_internal_pvt_solver->gps_cnav_ephemeris_map.cend())
{
d_rtcm_printer->lock_time(d_internal_pvt_solver->gps_cnav_ephemeris_map.find(in[i][epoch].PRN)->second, in[i][epoch].RX_time, in[i][epoch]); // keep track of locking time
}
}
if (d_internal_pvt_solver->glonass_gnav_ephemeris_map.empty() == false)
{
if (tmp_eph_iter_glo_gnav != d_internal_pvt_solver->glonass_gnav_ephemeris_map.cend())
{
d_rtcm_printer->lock_time(d_internal_pvt_solver->glonass_gnav_ephemeris_map.find(in[i][epoch].PRN)->second, in[i][epoch].RX_time, in[i][epoch]); // keep track of locking time
}
}
}
catch (const boost::exception& ex)
{
std::cout << "RTCM boost exception: " << boost::diagnostic_information(ex) << '\n';
LOG(ERROR) << "RTCM boost exception: " << boost::diagnostic_information(ex);
}
catch (const std::exception& ex)
{
std::cout << "RTCM std exception: " << ex.what() << '\n';
LOG(ERROR) << "RTCM std exception: " << ex.what();
}
}
}
else
{
d_channel_initialized.at(i) = false; // the current channel is not reporting valid observable
}
}
// ############ 2 COMPUTE THE PVT ################################
bool flag_pvt_valid = false;
if (d_gnss_observables_map.empty() == false)
{
// LOG(INFO) << "diff raw obs time: " << d_gnss_observables_map.cbegin()->second.RX_time * 1000.0 - old_time_debug;
// old_time_debug = d_gnss_observables_map.cbegin()->second.RX_time * 1000.0;
uint32_t current_RX_time_ms = 0;
// #### solve PVT and store the corrected observable set
if (d_internal_pvt_solver->get_PVT(d_gnss_observables_map, false))
{
const double Rx_clock_offset_s = d_internal_pvt_solver->get_time_offset_s();
if (fabs(Rx_clock_offset_s) * 1000.0 > d_max_obs_block_rx_clock_offset_ms)
{
if (!d_waiting_obs_block_rx_clock_offset_correction_msg)
{
this->message_port_pub(pmt::mp("pvt_to_observables"), pmt::make_any(Rx_clock_offset_s));
d_waiting_obs_block_rx_clock_offset_correction_msg = true;
LOG(INFO) << "Sent clock offset correction to observables: " << Rx_clock_offset_s << "[s]";
}
}
else
{
if (d_enable_rx_clock_correction == true)
{
d_waiting_obs_block_rx_clock_offset_correction_msg = false;
d_gnss_observables_map_t0 = d_gnss_observables_map_t1;
apply_rx_clock_offset(d_gnss_observables_map, Rx_clock_offset_s);
d_gnss_observables_map_t1 = d_gnss_observables_map;
// ### select the rx_time and interpolate observables at that time
if (!d_gnss_observables_map_t0.empty())
{
const auto t0_int_ms = static_cast<uint32_t>(d_gnss_observables_map_t0.cbegin()->second.RX_time * 1000.0);
const uint32_t adjust_next_20ms = 20 - t0_int_ms % 20;
current_RX_time_ms = t0_int_ms + adjust_next_20ms;
if (current_RX_time_ms % d_output_rate_ms == 0)
{
d_rx_time = static_cast<double>(current_RX_time_ms) / 1000.0;
// std::cout << " obs time t0: " << d_gnss_observables_map_t0.cbegin()->second.RX_time
// << " t1: " << d_gnss_observables_map_t1.cbegin()->second.RX_time
// << " interp time: " << d_rx_time << '\n';
d_gnss_observables_map = interpolate_observables(d_gnss_observables_map_t0,
d_gnss_observables_map_t1,
d_rx_time);
flag_compute_pvt_output = true;
// d_rx_time = current_RX_time;
// std::cout.precision(17);
// std::cout << "current_RX_time: " << current_RX_time << " map time: " << d_gnss_observables_map.begin()->second.RX_time << '\n';
}
}
}
else
{
d_rx_time = d_gnss_observables_map.begin()->second.RX_time;
current_RX_time_ms = static_cast<uint32_t>(d_rx_time * 1000.0);
if (current_RX_time_ms % d_output_rate_ms == 0)
{
flag_compute_pvt_output = true;
// std::cout.precision(17);
// std::cout << "current_RX_time: " << current_RX_time << " map time: " << d_gnss_observables_map.begin()->second.RX_time << '\n';
}
flag_pvt_valid = true;
}
}
}
// debug code
// else
// {
// DLOG(INFO) << "Internal PVT solver error";
// }
// compute on the fly PVT solution
if (flag_compute_pvt_output == true)
{
flag_pvt_valid = d_user_pvt_solver->get_PVT(d_gnss_observables_map, false);
}
if (flag_pvt_valid == true)
{
// initialize (if needed) the accumulated phase offset and apply it to the active channels
// required to report accumulated phase cycles comparable to pseudoranges
initialize_and_apply_carrier_phase_offset();
const double Rx_clock_offset_s = d_user_pvt_solver->get_time_offset_s();
if (d_enable_rx_clock_correction == true and fabs(Rx_clock_offset_s) > 0.000001) // 1us !!
{
LOG(INFO) << "Warning: Rx clock offset at interpolated RX time: " << Rx_clock_offset_s * 1000.0 << "[ms]"
<< " at RX time: " << static_cast<uint32_t>(d_rx_time * 1000.0) << " [ms]";
}
else
{
DLOG(INFO) << "Rx clock offset at interpolated RX time: " << Rx_clock_offset_s * 1000.0 << "[s]"
<< " at RX time: " << static_cast<uint32_t>(d_rx_time * 1000.0) << " [ms]";
// Optional debug code: export observables snapshot for rtklib unit testing
// std::cout << "step 1: save gnss_synchro map\n";
// save_gnss_synchro_map_xml("./gnss_synchro_map.xml");
// getchar(); // stop the execution
// end debug
if (d_display_rate_ms != 0)
{
if (current_RX_time_ms % d_display_rate_ms == 0)
{
flag_display_pvt = true;
}
}
if (d_rtcm_MT1019_rate_ms != 0) // allows deactivating messages by setting rate = 0
{
if (current_RX_time_ms % d_rtcm_MT1019_rate_ms == 0)
{
flag_write_RTCM_1019_output = true;
}
}
if (d_rtcm_MT1020_rate_ms != 0) // allows deactivating messages by setting rate = 0
{
if (current_RX_time_ms % d_rtcm_MT1020_rate_ms == 0)
{
flag_write_RTCM_1020_output = true;
}
}
if (d_rtcm_MT1045_rate_ms != 0)
{
if (current_RX_time_ms % d_rtcm_MT1045_rate_ms == 0)
{
flag_write_RTCM_1045_output = true;
}
}
// TODO: RTCM 1077, 1087 and 1097 are not used, so, disable the output rates
// if (current_RX_time_ms % d_rtcm_MT1077_rate_ms==0 and d_rtcm_MT1077_rate_ms != 0)
// {
// last_RTCM_1077_output_time = current_RX_time;
// }
// if (current_RX_time_ms % d_rtcm_MT1087_rate_ms==0 and d_rtcm_MT1087_rate_ms != 0)
// {
// last_RTCM_1087_output_time = current_RX_time;
// }
// if (current_RX_time_ms % d_rtcm_MT1097_rate_ms==0 and d_rtcm_MT1097_rate_ms != 0)
// {
// last_RTCM_1097_output_time = current_RX_time;
// }
if (d_rtcm_MSM_rate_ms != 0)
{
if (current_RX_time_ms % d_rtcm_MSM_rate_ms == 0)
{
flag_write_RTCM_MSM_output = true;
}
}
if (d_rinexobs_rate_ms != 0)
{
if (current_RX_time_ms % static_cast<uint32_t>(d_rinexobs_rate_ms) == 0)
{
flag_write_RINEX_obs_output = true;
}
}
if (d_first_fix == true)
{
if (d_show_local_time_zone)
{
const boost::posix_time::ptime time_first_solution = d_user_pvt_solver->get_position_UTC_time() + d_utc_diff_time;
std::cout << "First position fix at " << time_first_solution << d_local_time_str;
}
else
{
std::cout << "First position fix at " << d_user_pvt_solver->get_position_UTC_time() << " UTC";
}
std::cout << " is Lat = " << d_user_pvt_solver->get_latitude() << " [deg], Long = " << d_user_pvt_solver->get_longitude()
<< " [deg], Height= " << d_user_pvt_solver->get_height() << " [m]\n";
d_ttff_msgbuf ttff;
ttff.mtype = 1;
d_end = std::chrono::system_clock::now();
std::chrono::duration<double> elapsed_seconds = d_end - d_start;
ttff.ttff = elapsed_seconds.count();
send_sys_v_ttff_msg(ttff);
d_first_fix = false;
}
if (d_kml_output_enabled)
{
if (current_RX_time_ms % d_kml_rate_ms == 0)
{
d_kml_dump->print_position(d_user_pvt_solver.get(), false);
}
}
if (d_gpx_output_enabled)
{
if (current_RX_time_ms % d_gpx_rate_ms == 0)
{
d_gpx_dump->print_position(d_user_pvt_solver.get(), false);
}
}
if (d_geojson_output_enabled)
{
if (current_RX_time_ms % d_geojson_rate_ms == 0)
{
d_geojson_printer->print_position(d_user_pvt_solver.get(), false);
}
}
if (d_nmea_output_file_enabled)
{
if (current_RX_time_ms % d_nmea_rate_ms == 0)
{
d_nmea_printer->Print_Nmea_Line(d_user_pvt_solver.get(), false);
}
}
if (d_rinex_output_enabled)
{
d_rp->print_rinex_annotation(d_user_pvt_solver.get(), d_gnss_observables_map, d_rx_time, d_type_of_rx, flag_write_RINEX_obs_output);
}
if (d_rtcm_enabled)
{
d_rtcm_printer->Print_Rtcm_Messages(d_user_pvt_solver.get(),
d_gnss_observables_map,
d_rx_time,
d_type_of_rx,
d_rtcm_MSM_rate_ms,
d_rtcm_MT1019_rate_ms,
d_rtcm_MT1020_rate_ms,
d_rtcm_MT1045_rate_ms,
d_rtcm_MT1077_rate_ms,
d_rtcm_MT1097_rate_ms,
flag_write_RTCM_MSM_output,
flag_write_RTCM_1019_output,
flag_write_RTCM_1020_output,
flag_write_RTCM_1045_output,
d_enable_rx_clock_correction);
}
}
}
// DEBUG MESSAGE: Display position in console output
if (d_user_pvt_solver->is_valid_position() and flag_display_pvt)
{
boost::posix_time::ptime time_solution;
std::string UTC_solution_str;
if (d_show_local_time_zone)
{
time_solution = d_user_pvt_solver->get_position_UTC_time() + d_utc_diff_time;
UTC_solution_str = d_local_time_str;
}
else
{
time_solution = d_user_pvt_solver->get_position_UTC_time();
UTC_solution_str = " UTC";
}
std::streamsize ss = std::cout.precision(); // save current precision
std::cout.setf(std::ios::fixed, std::ios::floatfield);
auto facet = new boost::posix_time::time_facet("%Y-%b-%d %H:%M:%S.%f %z");
std::cout.imbue(std::locale(std::cout.getloc(), facet));
std::cout
<< TEXT_BOLD_GREEN
<< "Position at " << time_solution << UTC_solution_str
<< " using " << d_user_pvt_solver->get_num_valid_observations()
<< std::fixed << std::setprecision(9)
<< " observations is Lat = " << d_user_pvt_solver->get_latitude() << " [deg], Long = " << d_user_pvt_solver->get_longitude()
<< std::fixed << std::setprecision(3)
<< " [deg], Height = " << d_user_pvt_solver->get_height() << " [m]" << TEXT_RESET << '\n';
std::cout << std::setprecision(ss);
DLOG(INFO) << "RX clock offset: " << d_user_pvt_solver->get_time_offset_s() << "[s]";
std::cout
<< TEXT_BOLD_GREEN
<< "Velocity: " << std::fixed << std::setprecision(3)
<< "East: " << d_user_pvt_solver->get_rx_vel()[0] << " [m/s], North: " << d_user_pvt_solver->get_rx_vel()[1]
<< " [m/s], Up = " << d_user_pvt_solver->get_rx_vel()[2] << " [m/s]" << TEXT_RESET << '\n';
std::cout << std::setprecision(ss);
DLOG(INFO) << "RX clock drift: " << d_user_pvt_solver->get_clock_drift_ppm() << " [ppm]";
// boost::posix_time::ptime p_time;
// gtime_t rtklib_utc_time = gpst2time(adjgpsweek(d_user_pvt_solver->gps_ephemeris_map.cbegin()->second.i_GPS_week), d_rx_time);
// p_time = boost::posix_time::from_time_t(rtklib_utc_time.time);
// p_time += boost::posix_time::microseconds(round(rtklib_utc_time.sec * 1e6));
// std::cout << TEXT_MAGENTA << "Observable RX time (GPST) " << boost::posix_time::to_simple_string(p_time) << TEXT_RESET << '\n';
DLOG(INFO) << "Position at " << boost::posix_time::to_simple_string(d_user_pvt_solver->get_position_UTC_time())
<< " UTC using " << d_user_pvt_solver->get_num_valid_observations() << " observations is Lat = " << d_user_pvt_solver->get_latitude() << " [deg], Long = " << d_user_pvt_solver->get_longitude()
<< " [deg], Height = " << d_user_pvt_solver->get_height() << " [m]";
/* std::cout << "Dilution of Precision at " << boost::posix_time::to_simple_string(d_user_pvt_solver->get_position_UTC_time())
<< " UTC using "<< d_user_pvt_solver->get_num_valid_observations() <<" observations is HDOP = " << d_user_pvt_solver->get_hdop() << " VDOP = "
<< d_user_pvt_solver->get_vdop()
<< " GDOP = " << d_user_pvt_solver->get_gdop() << '\n'; */
}
// PVT MONITOR
if (d_user_pvt_solver->is_valid_position())
{
const std::shared_ptr<Monitor_Pvt> monitor_pvt = std::make_shared<Monitor_Pvt>(d_user_pvt_solver->get_monitor_pvt());
// publish new position to the gnss_flowgraph channel status monitor
if (current_RX_time_ms % d_report_rate_ms == 0)
{
this->message_port_pub(pmt::mp("status"), pmt::make_any(monitor_pvt));
}
if (d_flag_monitor_pvt_enabled)
{
d_udp_sink_ptr->write_monitor_pvt(monitor_pvt.get());
}
}
}
}
return noutput_items;
}