gnss-sdr/src/core/libs/supl/asn-rrlp/constr_SET_OF.c

1207 lines
36 KiB
C

/*-
* Copyright (c) 2003, 2004, 2005 Lev Walkin <vlm@lionet.info>.
* All rights reserved.
* Redistribution and modifications are permitted subject to BSD license.
*/
#include <asn_SET_OF.h>
#include <asn_internal.h>
#include <constr_SET_OF.h>
/*
* Number of bytes left for this structure.
* (ctx->left) indicates the number of bytes _transferred_ for the structure.
* (size) contains the number of bytes in the buffer passed.
*/
#define LEFT ((size < (size_t)ctx->left) ? size : (size_t)ctx->left)
/*
* If the subprocessor function returns with an indication that it wants
* more data, it may well be a fatal decoding problem, because the
* size is constrained by the <TLV>'s L, even if the buffer size allows
* reading more data.
* For example, consider the buffer containing the following TLVs:
* <T:5><L:1><V> <T:6>...
* The TLV length clearly indicates that one byte is expected in V, but
* if the V processor returns with "want more data" even if the buffer
* contains way more data than the V processor have seen.
*/
#define SIZE_VIOLATION (ctx->left >= 0 && (size_t)ctx->left <= size)
/*
* This macro "eats" the part of the buffer which is definitely "consumed",
* i.e. was correctly converted into local representation or rightfully skipped.
*/
#undef ADVANCE
#define ADVANCE(num_bytes) \
do \
{ \
size_t num = num_bytes; \
ptr = ((const char *)ptr) + num; \
size -= num; \
if (ctx->left >= 0) ctx->left -= num; \
consumed_myself += num; \
} \
while (0)
/*
* Switch to the next phase of parsing.
*/
#undef NEXT_PHASE
#undef PHASE_OUT
#define NEXT_PHASE(ctx) \
do \
{ \
(ctx)->phase++; \
(ctx)->step = 0; \
} \
while (0)
#define PHASE_OUT(ctx) \
do \
{ \
(ctx)->phase = 10; \
} \
while (0)
/*
* Return a standardized complex structure.
*/
#undef RETURN
#define RETURN(_code) \
do \
{ \
rval.code = _code; \
rval.consumed = consumed_myself; \
return rval; \
} \
while (0)
/*
* The decoder of the SET OF type.
*/
asn_dec_rval_t SET_OF_decode_ber(asn_codec_ctx_t *opt_codec_ctx,
asn_TYPE_descriptor_t *td, void **struct_ptr,
const void *ptr, size_t size, int tag_mode)
{
/*
* Bring closer parts of structure description.
*/
asn_SET_OF_specifics_t *specs = (asn_SET_OF_specifics_t *)td->specifics;
asn_TYPE_member_t *elm = td->elements; /* Single one */
/*
* Parts of the structure being constructed.
*/
void *st = *struct_ptr; /* Target structure. */
asn_struct_ctx_t *ctx; /* Decoder context */
ber_tlv_tag_t tlv_tag; /* T from TLV */
asn_dec_rval_t rval; /* Return code from subparsers */
ssize_t consumed_myself = 0; /* Consumed bytes from ptr */
ASN_DEBUG("Decoding %s as SET OF", td->name);
/*
* Create the target structure if it is not present already.
*/
if (st == 0)
{
st = *struct_ptr = CALLOC(1, specs->struct_size);
if (st == 0)
{
RETURN(RC_FAIL);
}
}
/*
* Restore parsing context.
*/
ctx = (asn_struct_ctx_t *)((char *)st + specs->ctx_offset);
/*
* Start to parse where left previously
*/
switch (ctx->phase)
{
case 0:
/*
* PHASE 0.
* Check that the set of tags associated with given structure
* perfectly fits our expectations.
*/
rval = ber_check_tags(opt_codec_ctx, td, ctx, ptr, size,
tag_mode, 1, &ctx->left, 0);
if (rval.code != RC_OK)
{
ASN_DEBUG("%s tagging check failed: %d", td->name,
rval.code);
return rval;
}
if (ctx->left >= 0)
{
ctx->left += rval.consumed; /* ?Subtracted below! */
}
ADVANCE(rval.consumed);
ASN_DEBUG(
"Structure consumes %ld bytes, "
"buffer %ld",
(long)ctx->left, (long)size);
NEXT_PHASE(ctx);
/* Fall through */
case 1:
/*
* PHASE 1.
* From the place where we've left it previously,
* try to decode the next item.
*/
for (;; ctx->step = 0)
{
ssize_t tag_len; /* Length of TLV's T */
if (ctx->step & 1)
{
goto microphase2;
}
/*
* MICROPHASE 1: Synchronize decoding.
*/
if (ctx->left == 0)
{
ASN_DEBUG("End of SET OF %s", td->name);
/*
* No more things to decode.
* Exit out of here.
*/
PHASE_OUT(ctx);
RETURN(RC_OK);
}
/*
* Fetch the T from TLV.
*/
tag_len = ber_fetch_tag(ptr, LEFT, &tlv_tag);
switch (tag_len)
{
case 0:
if (!SIZE_VIOLATION)
{
RETURN(RC_WMORE);
}
/* Fall through */
case -1:
RETURN(RC_FAIL);
}
if (ctx->left < 0 && ((const uint8_t *)ptr)[0] == 0)
{
if (LEFT < 2)
{
if (SIZE_VIOLATION)
{
RETURN(RC_FAIL);
}
else
{
RETURN(RC_WMORE);
}
}
else if (((const uint8_t *)ptr)[1] == 0)
{
/*
* Found the terminator of the
* indefinite length structure.
*/
break;
}
}
/* Outmost tag may be unknown and cannot be
* fetched/compared */
if (elm->tag != (ber_tlv_tag_t)-1)
{
if (BER_TAGS_EQUAL(tlv_tag, elm->tag))
{
/*
* The new list member of expected type
* has arrived.
*/
}
else
{
ASN_DEBUG(
"Unexpected tag %s fixed SET OF %s",
ber_tlv_tag_string(tlv_tag),
td->name);
ASN_DEBUG("%s SET OF has tag %s",
td->name,
ber_tlv_tag_string(elm->tag));
RETURN(RC_FAIL);
}
}
/*
* MICROPHASE 2: Invoke the member-specific decoder.
*/
ctx->step |= 1; /* Confirm entering next microphase */
microphase2:
/*
* Invoke the member fetch routine according to member's
* type
*/
rval = elm->type->ber_decoder(opt_codec_ctx, elm->type,
&ctx->ptr, ptr, LEFT, 0);
ASN_DEBUG("In %s SET OF %s code %d consumed %d",
td->name, elm->type->name, rval.code,
(int)rval.consumed);
switch (rval.code)
{
case RC_OK:
{
asn_anonymous_set_ *list =
_A_SET_FROM_VOID(st);
if (ASN_SET_ADD(list, ctx->ptr) != 0)
{
RETURN(RC_FAIL);
}
else
{
ctx->ptr = 0;
}
}
break;
case RC_WMORE: /* More data expected */
if (!SIZE_VIOLATION)
{
ADVANCE(rval.consumed);
RETURN(RC_WMORE);
}
/* Fall through */
case RC_FAIL: /* Fatal error */
ASN_STRUCT_FREE(*elm->type, ctx->ptr);
ctx->ptr = 0;
RETURN(RC_FAIL);
} /* switch(rval) */
ADVANCE(rval.consumed);
} /* for(all list members) */
NEXT_PHASE(ctx);
case 2:
/*
* Read in all "end of content" TLVs.
*/
while (ctx->left < 0)
{
if (LEFT < 2)
{
if (LEFT > 0 && ((const char *)ptr)[0] != 0)
{
/* Unexpected tag */
RETURN(RC_FAIL);
}
else
{
RETURN(RC_WMORE);
}
}
if (((const char *)ptr)[0] == 0 &&
((const char *)ptr)[1] == 0)
{
ADVANCE(2);
ctx->left++;
}
else
{
RETURN(RC_FAIL);
}
}
PHASE_OUT(ctx);
}
RETURN(RC_OK);
}
/*
* Internally visible buffer holding a single encoded element.
*/
struct _el_buffer
{
uint8_t *buf;
size_t length;
size_t size;
};
/* Append bytes to the above structure */
static int _el_addbytes(const void *buffer, size_t size, void *el_buf_ptr)
{
struct _el_buffer *el_buf = (struct _el_buffer *)el_buf_ptr;
if (el_buf->length + size > el_buf->size)
{
return -1;
}
memcpy(el_buf->buf + el_buf->length, buffer, size);
el_buf->length += size;
return 0;
}
static int _el_buf_cmp(const void *ap, const void *bp)
{
const struct _el_buffer *a = (const struct _el_buffer *)ap;
const struct _el_buffer *b = (const struct _el_buffer *)bp;
int ret;
size_t common_len;
if (a->length < b->length)
{
common_len = a->length;
}
else
{
common_len = b->length;
}
ret = memcmp(a->buf, b->buf, common_len);
if (ret == 0)
{
if (a->length < b->length)
{
ret = -1;
}
else if (a->length > b->length)
{
ret = 1;
}
}
return ret;
}
/*
* The DER encoder of the SET OF type.
*/
asn_enc_rval_t SET_OF_encode_der(asn_TYPE_descriptor_t *td, void *ptr,
int tag_mode, ber_tlv_tag_t tag,
asn_app_consume_bytes_f *cb, void *app_key)
{
asn_TYPE_member_t *elm = td->elements;
asn_TYPE_descriptor_t *elm_type = elm->type;
der_type_encoder_f *der_encoder = elm_type->der_encoder;
asn_anonymous_set_ *list = _A_SET_FROM_VOID(ptr);
size_t computed_size = 0;
ssize_t encoding_size = 0;
struct _el_buffer *encoded_els;
ssize_t eels_count = 0;
size_t max_encoded_len = 1;
asn_enc_rval_t erval;
int ret;
ssize_t edx;
ASN_DEBUG("Estimating size for SET OF %s", td->name);
/*
* Gather the length of the underlying members sequence.
*/
for (edx = 0; edx < list->count; edx++)
{
void *memb_ptr = list->array[edx];
if (!memb_ptr)
{
continue;
}
erval = der_encoder(elm_type, memb_ptr, 0, elm->tag, 0, 0);
if (erval.encoded == -1)
{
return erval;
}
computed_size += erval.encoded;
/* Compute maximum encoding's size */
if (max_encoded_len < (size_t)erval.encoded)
{
max_encoded_len = erval.encoded;
}
}
/*
* Encode the TLV for the sequence itself.
*/
encoding_size =
der_write_tags(td, computed_size, tag_mode, 1, tag, cb, app_key);
if (encoding_size == -1)
{
erval.encoded = -1;
erval.failed_type = td;
erval.structure_ptr = ptr;
return erval;
}
computed_size += encoding_size;
if (!cb || list->count == 0)
{
erval.encoded = computed_size;
_ASN_ENCODED_OK(erval);
}
/*
* DER mandates dynamic sorting of the SET OF elements
* according to their encodings. Build an array of the
* encoded elements.
*/
encoded_els =
(struct _el_buffer *)MALLOC(list->count * sizeof(encoded_els[0]));
if (encoded_els == NULL)
{
erval.encoded = -1;
erval.failed_type = td;
erval.structure_ptr = ptr;
return erval;
}
ASN_DEBUG("Encoding members of %s SET OF", td->name);
/*
* Encode all members.
*/
for (edx = 0; edx < list->count; edx++)
{
void *memb_ptr = list->array[edx];
struct _el_buffer *encoded_el = &encoded_els[eels_count];
if (!memb_ptr)
{
continue;
}
/*
* Prepare space for encoding.
*/
encoded_el->buf = (uint8_t *)MALLOC(max_encoded_len);
if (encoded_el->buf)
{
encoded_el->length = 0;
encoded_el->size = max_encoded_len;
}
else
{
for (edx--; edx >= 0; edx--)
{
FREEMEM(encoded_els[edx].buf);
}
FREEMEM(encoded_els);
erval.encoded = -1;
erval.failed_type = td;
erval.structure_ptr = ptr;
return erval;
}
/*
* Encode the member into the prepared space.
*/
erval = der_encoder(elm_type, memb_ptr, 0, elm->tag, _el_addbytes,
encoded_el);
if (erval.encoded == -1)
{
for (; edx >= 0; edx--)
{
FREEMEM(encoded_els[edx].buf);
}
FREEMEM(encoded_els);
return erval;
}
encoding_size += erval.encoded;
eels_count++;
}
/*
* Sort the encoded elements according to their encoding.
*/
qsort(encoded_els, eels_count, sizeof(encoded_els[0]), _el_buf_cmp);
/*
* Report encoded elements to the application.
* Dispose of temporary sorted members table.
*/
ret = 0;
for (edx = 0; edx < eels_count; edx++)
{
struct _el_buffer *encoded_el = &encoded_els[edx];
/* Report encoded chunks to the application */
if (ret == 0 &&
cb(encoded_el->buf, encoded_el->length, app_key) < 0)
{
ret = -1;
}
FREEMEM(encoded_el->buf);
}
FREEMEM(encoded_els);
if (ret || computed_size != (size_t)encoding_size)
{
/*
* Standard callback failed, or
* encoded size is not equal to the computed size.
*/
erval.encoded = -1;
erval.failed_type = td;
erval.structure_ptr = ptr;
}
else
{
erval.encoded = computed_size;
}
_ASN_ENCODED_OK(erval);
}
#undef XER_ADVANCE
#define XER_ADVANCE(num_bytes) \
do \
{ \
size_t num = num_bytes; \
buf_ptr = ((const char *)buf_ptr) + num; \
size -= num; \
consumed_myself += num; \
} \
while (0)
/*
* Decode the XER (XML) data.
*/
asn_dec_rval_t SET_OF_decode_xer(asn_codec_ctx_t *opt_codec_ctx,
asn_TYPE_descriptor_t *td, void **struct_ptr,
const char *opt_mname, const void *buf_ptr,
size_t size)
{
/*
* Bring closer parts of structure description.
*/
asn_SET_OF_specifics_t *specs = (asn_SET_OF_specifics_t *)td->specifics;
asn_TYPE_member_t *element = td->elements;
const char *elm_tag;
const char *xml_tag = opt_mname ? opt_mname : td->xml_tag;
/*
* ... and parts of the structure being constructed.
*/
void *st = *struct_ptr; /* Target structure. */
asn_struct_ctx_t *ctx; /* Decoder context */
asn_dec_rval_t rval; /* Return value from a decoder */
ssize_t consumed_myself = 0; /* Consumed bytes from ptr */
/*
* Create the target structure if it is not present already.
*/
if (st == 0)
{
st = *struct_ptr = CALLOC(1, specs->struct_size);
if (st == 0)
{
RETURN(RC_FAIL);
}
}
/* Which tag is expected for the downstream */
if (specs->as_XMLValueList)
{
elm_tag = (specs->as_XMLValueList == 1) ? 0 : "";
}
else
{
elm_tag = (*element->name) ? element->name : element->type->xml_tag;
}
/*
* Restore parsing context.
*/
ctx = (asn_struct_ctx_t *)((char *)st + specs->ctx_offset);
/*
* Phases of XER/XML processing:
* Phase 0: Check that the opening tag matches our expectations.
* Phase 1: Processing body and reacting on closing tag.
* Phase 2: Processing inner type.
*/
for (; ctx->phase <= 2;)
{
pxer_chunk_type_e ch_type; /* XER chunk type */
ssize_t ch_size; /* Chunk size */
xer_check_tag_e tcv; /* Tag check value */
/*
* Go inside the inner member of a set.
*/
if (ctx->phase == 2)
{
asn_dec_rval_t tmprval;
/* Invoke the inner type decoder, m.b. multiple times */
ASN_DEBUG("XER/SET OF element [%s]", elm_tag);
tmprval = element->type->xer_decoder(
opt_codec_ctx, element->type, &ctx->ptr, elm_tag,
buf_ptr, size);
if (tmprval.code == RC_OK)
{
asn_anonymous_set_ *list = _A_SET_FROM_VOID(st);
if (ASN_SET_ADD(list, ctx->ptr) != 0)
{
RETURN(RC_FAIL);
}
ctx->ptr = 0;
XER_ADVANCE(tmprval.consumed);
}
else
{
XER_ADVANCE(tmprval.consumed);
RETURN(tmprval.code);
}
ctx->phase = 1; /* Back to body processing */
ASN_DEBUG("XER/SET OF phase => %d", ctx->phase);
/* Fall through */
}
/*
* Get the next part of the XML stream.
*/
ch_size = xer_next_token(&ctx->context, buf_ptr, size, &ch_type);
switch (ch_size)
{
case -1:
RETURN(RC_FAIL);
case 0:
RETURN(RC_WMORE);
default:
switch (ch_type)
{
case PXER_COMMENT: /* Got XML comment */
case PXER_TEXT: /* Ignore free-standing text */
XER_ADVANCE(ch_size); /* Skip silently */
continue;
case PXER_TAG:
break; /* Check the rest down there */
}
}
tcv = xer_check_tag(buf_ptr, ch_size, xml_tag);
ASN_DEBUG("XER/SET OF: tcv = %d, ph=%d t=%s", tcv, ctx->phase,
xml_tag);
switch (tcv)
{
case XCT_CLOSING:
if (ctx->phase == 0)
{
break;
}
ctx->phase = 0;
/* Fall through */
case XCT_BOTH:
if (ctx->phase == 0)
{
/* No more things to decode */
XER_ADVANCE(ch_size);
ctx->phase = 3; /* Phase out */
RETURN(RC_OK);
}
/* Fall through */
case XCT_OPENING:
if (ctx->phase == 0)
{
XER_ADVANCE(ch_size);
ctx->phase = 1; /* Processing body phase */
continue;
}
/* Fall through */
case XCT_UNKNOWN_OP:
case XCT_UNKNOWN_BO:
ASN_DEBUG("XER/SET OF: tcv=%d, ph=%d", tcv, ctx->phase);
if (ctx->phase == 1)
{
/*
* Process a single possible member.
*/
ctx->phase = 2;
continue;
}
/* Fall through */
default:
break;
}
ASN_DEBUG("Unexpected XML tag in SET OF");
break;
}
ctx->phase = 3; /* "Phase out" on hard failure */
RETURN(RC_FAIL);
}
typedef struct xer_tmp_enc_s
{
void *buffer;
size_t offset;
size_t size;
} xer_tmp_enc_t;
static int SET_OF_encode_xer_callback(const void *buffer, size_t size,
void *key)
{
xer_tmp_enc_t *t = (xer_tmp_enc_t *)key;
if (t->offset + size >= t->size)
{
size_t newsize = (t->size << 2) + size;
void *p = REALLOC(t->buffer, newsize);
if (!p)
{
return -1;
}
t->buffer = p;
t->size = newsize;
}
memcpy((char *)t->buffer + t->offset, buffer, size);
t->offset += size;
return 0;
}
static int SET_OF_xer_order(const void *aptr, const void *bptr)
{
const xer_tmp_enc_t *a = (const xer_tmp_enc_t *)aptr;
const xer_tmp_enc_t *b = (const xer_tmp_enc_t *)bptr;
size_t minlen = a->offset;
int ret;
if (b->offset < minlen)
{
minlen = b->offset;
}
/* Well-formed UTF-8 has this nice lexicographical property... */
ret = memcmp(a->buffer, b->buffer, minlen);
if (ret != 0)
{
return ret;
}
if (a->offset == b->offset)
{
return 0;
}
if (a->offset == minlen)
{
return -1;
}
return 1;
}
asn_enc_rval_t SET_OF_encode_xer(asn_TYPE_descriptor_t *td, void *sptr,
int ilevel, enum xer_encoder_flags_e flags,
asn_app_consume_bytes_f *cb, void *app_key)
{
asn_enc_rval_t er;
asn_SET_OF_specifics_t *specs = (asn_SET_OF_specifics_t *)td->specifics;
asn_TYPE_member_t *elm = td->elements;
asn_anonymous_set_ *list = _A_SET_FROM_VOID(sptr);
const char *mname = specs->as_XMLValueList
? 0
: ((*elm->name) ? elm->name : elm->type->xml_tag);
size_t mlen = mname ? strlen(mname) : 0;
int xcan = (flags & XER_F_CANONICAL);
xer_tmp_enc_t *encs = 0;
size_t encs_count = 0;
void *original_app_key = app_key;
asn_app_consume_bytes_f *original_cb = cb;
int i;
if (!sptr)
{
_ASN_ENCODE_FAILED;
}
if (xcan)
{
encs = (xer_tmp_enc_t *)MALLOC(list->count * sizeof(encs[0]));
if (!encs)
{
_ASN_ENCODE_FAILED;
}
cb = SET_OF_encode_xer_callback;
}
er.encoded = 0;
for (i = 0; i < list->count; i++)
{
asn_enc_rval_t tmper;
void *memb_ptr = list->array[i];
if (!memb_ptr)
{
continue;
}
if (encs)
{
memset(&encs[encs_count], 0, sizeof(encs[0]));
app_key = &encs[encs_count];
encs_count++;
}
if (mname)
{
if (!xcan)
{
_i_ASN_TEXT_INDENT(1, ilevel);
}
_ASN_CALLBACK3("<", 1, mname, mlen, ">", 1);
}
if (!xcan && specs->as_XMLValueList == 1)
{
_i_ASN_TEXT_INDENT(1, ilevel + 1);
}
tmper = elm->type->xer_encoder(
elm->type, memb_ptr, ilevel + (specs->as_XMLValueList != 2),
flags, cb, app_key);
if (tmper.encoded == -1)
{
td = tmper.failed_type;
sptr = tmper.structure_ptr;
goto cb_failed;
}
if (tmper.encoded == 0 && specs->as_XMLValueList)
{
const char *name = elm->type->xml_tag;
size_t len = strlen(name);
_ASN_CALLBACK3("<", 1, name, len, "/>", 2);
}
if (mname)
{
_ASN_CALLBACK3("</", 2, mname, mlen, ">", 1);
er.encoded += 5;
}
er.encoded += (2 * mlen) + tmper.encoded;
}
if (!xcan)
{
_i_ASN_TEXT_INDENT(1, ilevel - 1);
}
if (encs)
{
xer_tmp_enc_t *enc = encs;
xer_tmp_enc_t *end = encs + encs_count;
ssize_t control_size = 0;
cb = original_cb;
app_key = original_app_key;
qsort(encs, encs_count, sizeof(encs[0]), SET_OF_xer_order);
for (; enc < end; enc++)
{
_ASN_CALLBACK(enc->buffer, enc->offset);
FREEMEM(enc->buffer);
enc->buffer = 0;
control_size += enc->offset;
}
assert(control_size == er.encoded);
}
goto cleanup;
cb_failed:
er.encoded = -1;
er.failed_type = td;
er.structure_ptr = sptr;
cleanup:
if (encs)
{
while (encs_count-- > 0)
{
if (encs[encs_count].buffer)
{
FREEMEM(encs[encs_count].buffer);
}
}
FREEMEM(encs);
}
_ASN_ENCODED_OK(er);
}
int SET_OF_print(asn_TYPE_descriptor_t *td, const void *sptr, int ilevel,
asn_app_consume_bytes_f *cb, void *app_key)
{
asn_TYPE_member_t *elm = td->elements;
const asn_anonymous_set_ *list = _A_CSET_FROM_VOID(sptr);
int ret;
int i;
if (!sptr)
{
return (cb("<absent>", 8, app_key) < 0) ? -1 : 0;
}
/* Dump preamble */
if (cb(td->name, strlen(td->name), app_key) < 0 ||
cb(" ::= {", 6, app_key) < 0)
{
return -1;
}
for (i = 0; i < list->count; i++)
{
const void *memb_ptr = list->array[i];
if (!memb_ptr)
{
continue;
}
_i_INDENT(1);
ret = elm->type->print_struct(elm->type, memb_ptr, ilevel + 1, cb,
app_key);
if (ret)
{
return ret;
}
}
ilevel--;
_i_INDENT(1);
return (cb("}", 1, app_key) < 0) ? -1 : 0;
}
void SET_OF_free(asn_TYPE_descriptor_t *td, void *ptr, int contents_only)
{
if (td && ptr)
{
asn_SET_OF_specifics_t *specs;
asn_TYPE_member_t *elm = td->elements;
asn_anonymous_set_ *list = _A_SET_FROM_VOID(ptr);
asn_struct_ctx_t *ctx; /* Decoder context */
int i;
/*
* Could not use set_of_empty() because of (*free)
* incompatibility.
*/
for (i = 0; i < list->count; i++)
{
void *memb_ptr = list->array[i];
if (memb_ptr)
{
ASN_STRUCT_FREE(*elm->type, memb_ptr);
}
}
list->count = 0; /* No meaningful elements left */
asn_set_empty(list); /* Remove (list->array) */
specs = (asn_SET_OF_specifics_t *)td->specifics;
ctx = (asn_struct_ctx_t *)((char *)ptr + specs->ctx_offset);
if (ctx->ptr)
{
ASN_STRUCT_FREE(*elm->type, ctx->ptr);
ctx->ptr = 0;
}
if (!contents_only)
{
FREEMEM(ptr);
}
}
}
int SET_OF_constraint(asn_TYPE_descriptor_t *td, const void *sptr,
asn_app_constraint_failed_f *ctfailcb, void *app_key)
{
asn_TYPE_member_t *elm = td->elements;
asn_constr_check_f *constr;
const asn_anonymous_set_ *list = _A_CSET_FROM_VOID(sptr);
int i;
if (!sptr)
{
_ASN_CTFAIL(app_key, td, sptr, "%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
constr = elm->memb_constraints;
if (!constr)
{
constr = elm->type->check_constraints;
}
/*
* Iterate over the members of an array.
* Validate each in turn, until one fails.
*/
for (i = 0; i < list->count; i++)
{
const void *memb_ptr = list->array[i];
int ret;
if (!memb_ptr)
{
continue;
}
ret = constr(elm->type, memb_ptr, ctfailcb, app_key);
if (ret)
{
return ret;
}
}
/*
* Cannot inherit it eralier:
* need to make sure we get the updated version.
*/
if (!elm->memb_constraints)
{
elm->memb_constraints = elm->type->check_constraints;
}
return 0;
}
asn_dec_rval_t SET_OF_decode_uper(asn_codec_ctx_t *opt_codec_ctx,
asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints,
void **sptr, asn_per_data_t *pd)
{
asn_dec_rval_t rv;
asn_SET_OF_specifics_t *specs = (asn_SET_OF_specifics_t *)td->specifics;
asn_TYPE_member_t *elm = td->elements; /* Single one */
void *st = *sptr;
asn_anonymous_set_ *list;
asn_per_constraint_t *ct;
int repeat = 0;
ssize_t nelems;
if (_ASN_STACK_OVERFLOW_CHECK(opt_codec_ctx))
{
_ASN_DECODE_FAILED;
}
/*
* Create the target structure if it is not present already.
*/
if (!st)
{
st = *sptr = CALLOC(1, specs->struct_size);
if (!st)
{
_ASN_DECODE_FAILED;
}
}
list = _A_SET_FROM_VOID(st);
/* Figure out which constraints to use */
if (constraints)
{
ct = &constraints->size;
}
else if (td->per_constraints)
{
ct = &td->per_constraints->size;
}
else
{
ct = 0;
}
if (ct && ct->flags & APC_EXTENSIBLE)
{
int value = per_get_few_bits(pd, 1);
if (value < 0)
{
_ASN_DECODE_STARVED;
}
if (value)
{
ct = 0; /* Not restricted! */
}
}
if (ct && ct->effective_bits >= 0)
{
/* X.691, #19.5: No length determinant */
nelems = per_get_few_bits(pd, ct->effective_bits);
ASN_DEBUG("Preparing to fetch %ld+%ld elements from %s",
(long)nelems, ct->lower_bound, td->name);
if (nelems < 0)
{
_ASN_DECODE_STARVED;
}
nelems += ct->lower_bound;
}
else
{
nelems = -1;
}
do
{
if (nelems < 0)
{
nelems = uper_get_length(pd, ct ? ct->effective_bits : -1,
&repeat);
ASN_DEBUG("Got to decode %d elements (eff %d)", (int)nelems,
(long)ct ? ct->effective_bits : -1);
if (nelems < 0)
{
_ASN_DECODE_STARVED;
}
}
for (ssize_t k = 0; k < nelems; k++)
{
void *ptr = 0;
ASN_DEBUG("SET OF %s decoding", elm->type->name);
rv =
elm->type->uper_decoder(opt_codec_ctx, elm->type,
elm->per_constraints, &ptr, pd);
ASN_DEBUG("%s SET OF %s decoded %d, %p", td->name,
elm->type->name, rv.code, ptr);
if (rv.code == RC_OK)
{
if (ASN_SET_ADD(list, ptr) == 0)
{
continue;
}
ASN_DEBUG("Failed to add element into %s",
td->name);
/* Fall through */
rv.code = RC_FAIL;
}
else
{
ASN_DEBUG("Failed decoding %s of %s (SET OF)",
elm->type->name, td->name);
}
if (ptr)
{
ASN_STRUCT_FREE(*elm->type, ptr);
}
return rv;
}
nelems = -1; /* Allow uper_get_length() */
}
while (repeat);
ASN_DEBUG("Decoded %s as SET OF", td->name);
rv.code = RC_OK;
rv.consumed = 0;
return rv;
}