gnss-sdr/src/core/libs/supl/asn-rrlp/constr_SEQUENCE.c

1785 lines
63 KiB
C

/*-
* Copyright (c) 2003, 2004, 2005, 2006, 2007 Lev Walkin <vlm@lionet.info>.
* All rights reserved.
* Redistribution and modifications are permitted subject to BSD license.
*/
#include <asn_internal.h>
#include <constr_SEQUENCE.h>
#include <per_opentype.h>
/*
* Number of bytes left for this structure.
* (ctx->left) indicates the number of bytes _transferred_ for the structure.
* (size) contains the number of bytes in the buffer passed.
*/
#define LEFT ((size < (size_t)ctx->left) ? size : (size_t)ctx->left)
/*
* If the subprocessor function returns with an indication that it wants
* more data, it may well be a fatal decoding problem, because the
* size is constrained by the <TLV>'s L, even if the buffer size allows
* reading more data.
* For example, consider the buffer containing the following TLVs:
* <T:5><L:1><V> <T:6>...
* The TLV length clearly indicates that one byte is expected in V, but
* if the V processor returns with "want more data" even if the buffer
* contains way more data than the V processor have seen.
*/
#define SIZE_VIOLATION (ctx->left >= 0 && (size_t)ctx->left <= size)
/*
* This macro "eats" the part of the buffer which is definitely "consumed",
* i.e. was correctly converted into local representation or rightfully skipped.
*/
#undef ADVANCE
#define ADVANCE(num_bytes) \
do \
{ \
size_t num = num_bytes; \
ptr = ((const char *)ptr) + num; \
size -= num; \
if (ctx->left >= 0) ctx->left -= num; \
consumed_myself += num; \
} \
while (0)
/*
* Switch to the next phase of parsing.
*/
#undef NEXT_PHASE
#undef PHASE_OUT
#define NEXT_PHASE(ctx) \
do \
{ \
(ctx)->phase++; \
(ctx)->step = 0; \
} \
while (0)
#define PHASE_OUT(ctx) \
do \
{ \
(ctx)->phase = 10; \
} \
while (0)
/*
* Return a standardized complex structure.
*/
#undef RETURN
#define RETURN(_code) \
do \
{ \
rval.code = _code; \
rval.consumed = consumed_myself; \
return rval; \
} \
while (0)
/*
* Check whether we are inside the extensions group.
*/
#define IN_EXTENSION_GROUP(specs, memb_idx) \
(((memb_idx) > (specs)->ext_after) && ((memb_idx) < (specs)->ext_before))
/*
* Tags are canonically sorted in the tag2element map.
*/
static int _t2e_cmp(const void *ap, const void *bp)
{
const asn_TYPE_tag2member_t *a = (const asn_TYPE_tag2member_t *)ap;
const asn_TYPE_tag2member_t *b = (const asn_TYPE_tag2member_t *)bp;
int a_class = BER_TAG_CLASS(a->el_tag);
int b_class = BER_TAG_CLASS(b->el_tag);
if (a_class == b_class)
{
ber_tlv_tag_t a_value = BER_TAG_VALUE(a->el_tag);
ber_tlv_tag_t b_value = BER_TAG_VALUE(b->el_tag);
if (a_value == b_value)
{
if (a->el_no > b->el_no)
{
return 1;
}
/*
* Important: we do not check
* for a->el_no <= b->el_no!
*/
return 0;
}
else if (a_value < b_value)
{
return -1;
}
else
{
return 1;
}
}
else if (a_class < b_class)
{
return -1;
}
else
{
return 1;
}
}
/*
* The decoder of the SEQUENCE type.
*/
asn_dec_rval_t SEQUENCE_decode_ber(asn_codec_ctx_t *opt_codec_ctx,
asn_TYPE_descriptor_t *td, void **struct_ptr,
const void *ptr, size_t size, int tag_mode)
{
/*
* Bring closer parts of structure description.
*/
asn_SEQUENCE_specifics_t *specs = (asn_SEQUENCE_specifics_t *)td->specifics;
asn_TYPE_member_t *elements = td->elements;
/*
* Parts of the structure being constructed.
*/
void *st = *struct_ptr; /* Target structure. */
asn_struct_ctx_t *ctx; /* Decoder context */
ber_tlv_tag_t tlv_tag; /* T from TLV */
asn_dec_rval_t rval; /* Return code from subparsers */
ssize_t consumed_myself = 0; /* Consumed bytes from ptr */
int edx; /* SEQUENCE element's index */
ASN_DEBUG("Decoding %s as SEQUENCE", td->name);
/*
* Create the target structure if it is not present already.
*/
if (st == 0)
{
st = *struct_ptr = CALLOC(1, specs->struct_size);
if (st == 0)
{
RETURN(RC_FAIL);
}
}
/*
* Restore parsing context.
*/
ctx = (asn_struct_ctx_t *)((char *)st + specs->ctx_offset);
/*
* Start to parse where left previously
*/
switch (ctx->phase)
{
case 0:
/*
* PHASE 0.
* Check that the set of tags associated with given structure
* perfectly fits our expectations.
*/
rval = ber_check_tags(opt_codec_ctx, td, ctx, ptr, size,
tag_mode, 1, &ctx->left, 0);
if (rval.code != RC_OK)
{
ASN_DEBUG("%s tagging check failed: %d", td->name,
rval.code);
return rval;
}
if (ctx->left >= 0)
{
ctx->left += rval.consumed; /* ?Subtracted below! */
}
ADVANCE(rval.consumed);
NEXT_PHASE(ctx);
ASN_DEBUG("Structure consumes %ld bytes, buffer %ld",
(long)ctx->left, (long)size);
/* Fall through */
case 1:
/*
* PHASE 1.
* From the place where we've left it previously,
* try to decode the next member from the list of
* this structure's elements.
* (ctx->step) stores the member being processed
* between invocations and the microphase {0,1} of parsing
* that member:
* step = (<member_number> * 2 + <microphase>).
*/
for (edx = (ctx->step >> 1); edx < td->elements_count;
edx++, ctx->step = (ctx->step & ~1) + 2)
{
void *memb_ptr; /* Pointer to the member */
void **memb_ptr2; /* Pointer to that pointer */
ssize_t tag_len; /* Length of TLV's T */
int opt_edx_end; /* Next non-optional element */
int use_bsearch;
int n;
if (ctx->step & 1)
{
goto microphase2;
}
/*
* MICROPHASE 1: Synchronize decoding.
*/
ASN_DEBUG(
"In %s SEQUENCE left %d, edx=%d flags=%d"
" opt=%d ec=%d",
td->name, (int)ctx->left, edx, elements[edx].flags,
elements[edx].optional, td->elements_count);
if (ctx->left == 0 /* No more stuff is expected */
&& (
/* Explicit OPTIONAL specification reaches
the end */
(edx + elements[edx].optional ==
td->elements_count) ||
/* All extensions are optional */
(IN_EXTENSION_GROUP(specs, edx) &&
specs->ext_before > td->elements_count)))
{
ASN_DEBUG("End of SEQUENCE %s", td->name);
/*
* Found the legitimate end of the structure.
*/
PHASE_OUT(ctx);
RETURN(RC_OK);
}
/*
* Fetch the T from TLV.
*/
tag_len = ber_fetch_tag(ptr, LEFT, &tlv_tag);
ASN_DEBUG(
"Current tag in %s SEQUENCE for element %d "
"(%s) is %s encoded in %d bytes, of frame %ld",
td->name, edx, elements[edx].name,
ber_tlv_tag_string(tlv_tag), (int)tag_len,
(long)LEFT);
switch (tag_len)
{
case 0:
if (!SIZE_VIOLATION)
{
RETURN(RC_WMORE);
}
/* Fall through */
case -1:
RETURN(RC_FAIL);
}
if (ctx->left < 0 && ((const uint8_t *)ptr)[0] == 0)
{
if (LEFT < 2)
{
if (SIZE_VIOLATION)
{
RETURN(RC_FAIL);
}
else
{
RETURN(RC_WMORE);
}
}
else if (((const uint8_t *)ptr)[1] == 0)
{
ASN_DEBUG("edx = %d, opt = %d, ec=%d",
edx, elements[edx].optional,
td->elements_count);
if ((edx + elements[edx].optional ==
td->elements_count) ||
(IN_EXTENSION_GROUP(specs, edx) &&
specs->ext_before >
td->elements_count))
{
/*
* Yeah, baby! Found the
* terminator of the indefinite
* length structure.
*/
/*
* Proceed to the canonical
* finalization function.
* No advancing is necessary.
*/
goto phase3;
}
}
}
/*
* Find the next available type with this tag.
*/
use_bsearch = 0;
opt_edx_end = edx + elements[edx].optional + 1;
if (opt_edx_end > td->elements_count)
{
opt_edx_end = td->elements_count; /* Cap */
}
else if (opt_edx_end - edx > 8)
{
/* Limit the scope of linear search... */
opt_edx_end = edx + 8;
use_bsearch = 1;
/* ... and resort to bsearch() */
}
for (n = edx; n < opt_edx_end; n++)
{
if (BER_TAGS_EQUAL(tlv_tag, elements[n].tag))
{
/*
* Found element corresponding to the
* tag being looked at. Reposition over
* the right element.
*/
edx = n;
ctx->step = 1 + 2 * edx; /* Remember! */
goto microphase2;
}
else if (elements[n].flags & ATF_OPEN_TYPE)
{
/*
* This is the ANY type, which may bear
* any flag whatsoever.
*/
edx = n;
ctx->step = 1 + 2 * edx; /* Remember! */
goto microphase2;
}
else if (elements[n].tag == (ber_tlv_tag_t)-1)
{
use_bsearch = 1;
break;
}
}
if (use_bsearch)
{
/*
* Resort to a binary search over
* sorted array of tags.
*/
asn_TYPE_tag2member_t *t2m;
asn_TYPE_tag2member_t key;
key.el_tag = tlv_tag;
key.el_no = edx;
t2m = (asn_TYPE_tag2member_t *)bsearch(
&key, specs->tag2el, specs->tag2el_count,
sizeof(specs->tag2el[0]), _t2e_cmp);
if (t2m)
{
asn_TYPE_tag2member_t *best = 0;
asn_TYPE_tag2member_t *t2m_f;
asn_TYPE_tag2member_t *t2m_l;
int edx_max =
edx + elements[edx].optional;
/*
* Rewind to the first element with that
* tag, `cause bsearch() does not
* guarantee order.
*/
t2m_f = t2m + t2m->toff_first;
t2m_l = t2m + t2m->toff_last;
for (t2m = t2m_f; t2m <= t2m_l; t2m++)
{
if (t2m->el_no > edx_max)
{
break;
}
if (t2m->el_no < edx)
{
continue;
}
best = t2m;
}
if (best)
{
edx = best->el_no;
ctx->step = 1 + 2 * edx;
goto microphase2;
}
}
n = opt_edx_end;
}
if (n == opt_edx_end)
{
/*
* If tag is unknown, it may be either
* an unknown (thus, incorrect) tag,
* or an extension (...),
* or an end of the indefinite-length structure.
*/
if (!IN_EXTENSION_GROUP(
specs, edx + elements[edx].optional))
{
ASN_DEBUG("Unexpected tag %s (at %d)",
ber_tlv_tag_string(tlv_tag),
edx);
ASN_DEBUG("Expected tag %s (%s)%s",
ber_tlv_tag_string(
elements[edx].tag),
elements[edx].name,
elements[edx].optional
? " or alternatives"
: "");
RETURN(RC_FAIL);
}
else
{
/* Skip this tag */
ssize_t skip;
edx += elements[edx].optional;
ASN_DEBUG(
"Skipping unexpected %s (at %d)",
ber_tlv_tag_string(tlv_tag), edx);
skip = ber_skip_length(
opt_codec_ctx,
BER_TLV_CONSTRUCTED(ptr),
(const char *)ptr + tag_len,
LEFT - tag_len);
ASN_DEBUG("Skip length %d in %s",
(int)skip, td->name);
switch (skip)
{
case 0:
if (!SIZE_VIOLATION)
{
RETURN(RC_WMORE);
}
/* Fall through */
case -1:
RETURN(RC_FAIL);
}
ADVANCE(skip + tag_len);
ctx->step -= 2;
edx--;
continue; /* Try again with the next tag
*/
}
}
/*
* MICROPHASE 2: Invoke the member-specific decoder.
*/
ctx->step |= 1; /* Confirm entering next microphase */
microphase2:
ASN_DEBUG("Inside SEQUENCE %s MF2", td->name);
/*
* Compute the position of the member inside a
* structure, and also a type of containment (it may be
* contained as pointer or using inline inclusion).
*/
if (elements[edx].flags & ATF_POINTER)
{
/* Member is a pointer to another structure */
memb_ptr2 =
(void **)((char *)st +
elements[edx].memb_offset);
}
else
{
/*
* A pointer to a pointer
* holding the start of the structure
*/
memb_ptr =
(char *)st + elements[edx].memb_offset;
memb_ptr2 = &memb_ptr;
}
/*
* Invoke the member fetch routine according to member's
* type
*/
rval = elements[edx].type->ber_decoder(
opt_codec_ctx, elements[edx].type, memb_ptr2, ptr,
LEFT, elements[edx].tag_mode);
ASN_DEBUG(
"In %s SEQUENCE decoded %d %s of %d "
"in %d bytes rval.code %d, size=%d",
td->name, edx, elements[edx].type->name, (int)LEFT,
(int)rval.consumed, rval.code, (int)size);
switch (rval.code)
{
case RC_OK:
break;
case RC_WMORE: /* More data expected */
if (!SIZE_VIOLATION)
{
ADVANCE(rval.consumed);
RETURN(RC_WMORE);
}
ASN_DEBUG(
"Size violation (c->l=%ld <= s=%ld)",
(long)ctx->left, (long)size);
/* Fall through */
case RC_FAIL: /* Fatal error */
RETURN(RC_FAIL);
} /* switch(rval) */
ADVANCE(rval.consumed);
} /* for(all structure members) */
phase3:
ctx->phase = 3;
case 3: /* 00 and other tags expected */
case 4: /* only 00's expected */
ASN_DEBUG("SEQUENCE %s Leftover: %ld, size = %ld", td->name,
(long)ctx->left, (long)size);
/*
* Skip everything until the end of the SEQUENCE.
*/
while (ctx->left)
{
ssize_t tl;
ssize_t ll;
tl = ber_fetch_tag(ptr, LEFT, &tlv_tag);
switch (tl)
{
case 0:
if (!SIZE_VIOLATION)
{
RETURN(RC_WMORE);
}
/* Fall through */
case -1:
RETURN(RC_FAIL);
}
/*
* If expected <0><0>...
*/
if (ctx->left < 0 && ((const uint8_t *)ptr)[0] == 0)
{
if (LEFT < 2)
{
if (SIZE_VIOLATION)
{
RETURN(RC_FAIL);
}
else
{
RETURN(RC_WMORE);
}
}
else if (((const uint8_t *)ptr)[1] == 0)
{
/*
* Correctly finished with <0><0>.
*/
ADVANCE(2);
ctx->left++;
ctx->phase = 4;
continue;
}
}
if (!IN_EXTENSION_GROUP(specs, td->elements_count) ||
ctx->phase == 4)
{
ASN_DEBUG(
"Unexpected continuation "
"of a non-extensible type "
"%s (SEQUENCE): %s",
td->name, ber_tlv_tag_string(tlv_tag));
RETURN(RC_FAIL);
}
ll = ber_skip_length(opt_codec_ctx,
BER_TLV_CONSTRUCTED(ptr),
(const char *)ptr + tl, LEFT - tl);
switch (ll)
{
case 0:
if (!SIZE_VIOLATION)
{
RETURN(RC_WMORE);
}
/* Fall through */
case -1:
RETURN(RC_FAIL);
}
ADVANCE(tl + ll);
}
PHASE_OUT(ctx);
}
RETURN(RC_OK);
}
/*
* The DER encoder of the SEQUENCE type.
*/
asn_enc_rval_t SEQUENCE_encode_der(asn_TYPE_descriptor_t *td, void *sptr,
int tag_mode, ber_tlv_tag_t tag,
asn_app_consume_bytes_f *cb, void *app_key)
{
size_t computed_size = 0;
asn_enc_rval_t erval;
ssize_t ret;
int edx;
ASN_DEBUG("%s %s as SEQUENCE", cb ? "Encoding" : "Estimating", td->name);
/*
* Gather the length of the underlying members sequence.
*/
for (edx = 0; edx < td->elements_count; edx++)
{
asn_TYPE_member_t *elm = &td->elements[edx];
void *memb_ptr;
if (elm->flags & ATF_POINTER)
{
memb_ptr = *(void **)((char *)sptr + elm->memb_offset);
if (!memb_ptr)
{
if (elm->optional)
{
continue;
}
/* Mandatory element is missing */
_ASN_ENCODE_FAILED;
}
}
else
{
memb_ptr = (void *)((char *)sptr + elm->memb_offset);
}
erval = elm->type->der_encoder(elm->type, memb_ptr, elm->tag_mode,
elm->tag, 0, 0);
if (erval.encoded == -1)
{
return erval;
}
computed_size += erval.encoded;
ASN_DEBUG("Member %d %s estimated %ld bytes", edx, elm->name,
(long)erval.encoded);
}
/*
* Encode the TLV for the sequence itself.
*/
ret = der_write_tags(td, computed_size, tag_mode, 1, tag, cb, app_key);
ASN_DEBUG("Wrote tags: %ld (+%ld)", (long)ret, (long)computed_size);
if (ret == -1)
{
_ASN_ENCODE_FAILED;
}
erval.encoded = computed_size + ret;
if (!cb)
{
_ASN_ENCODED_OK(erval);
}
/*
* Encode all members.
*/
for (edx = 0; edx < td->elements_count; edx++)
{
asn_TYPE_member_t *elm = &td->elements[edx];
asn_enc_rval_t tmperval;
void *memb_ptr;
if (elm->flags & ATF_POINTER)
{
memb_ptr = *(void **)((char *)sptr + elm->memb_offset);
if (!memb_ptr)
{
continue;
}
}
else
{
memb_ptr = (void *)((char *)sptr + elm->memb_offset);
}
tmperval = elm->type->der_encoder(
elm->type, memb_ptr, elm->tag_mode, elm->tag, cb, app_key);
if (tmperval.encoded == -1)
{
return tmperval;
}
computed_size -= tmperval.encoded;
ASN_DEBUG("Member %d %s of SEQUENCE %s encoded in %ld bytes", edx,
elm->name, td->name, (long)tmperval.encoded);
}
if (computed_size != 0)
{
/*
* Encoded size is not equal to the computed size.
*/
_ASN_ENCODE_FAILED;
}
_ASN_ENCODED_OK(erval);
}
#undef XER_ADVANCE
#define XER_ADVANCE(num_bytes) \
do \
{ \
size_t num = num_bytes; \
buf_ptr = ((const char *)buf_ptr) + num; \
size -= num; \
consumed_myself += num; \
} \
while (0)
/*
* Decode the XER (XML) data.
*/
asn_dec_rval_t SEQUENCE_decode_xer(asn_codec_ctx_t *opt_codec_ctx,
asn_TYPE_descriptor_t *td, void **struct_ptr,
const char *opt_mname, const void *buf_ptr,
size_t size)
{
/*
* Bring closer parts of structure description.
*/
asn_SEQUENCE_specifics_t *specs = (asn_SEQUENCE_specifics_t *)td->specifics;
asn_TYPE_member_t *elements = td->elements;
const char *xml_tag = opt_mname ? opt_mname : td->xml_tag;
/*
* ... and parts of the structure being constructed.
*/
void *st = *struct_ptr; /* Target structure. */
asn_struct_ctx_t *ctx; /* Decoder context */
asn_dec_rval_t rval; /* Return value from a decoder */
ssize_t consumed_myself = 0; /* Consumed bytes from ptr */
int edx; /* Element index */
int edx_end;
/*
* Create the target structure if it is not present already.
*/
if (st == 0)
{
st = *struct_ptr = CALLOC(1, specs->struct_size);
if (st == 0)
{
RETURN(RC_FAIL);
}
}
/*
* Restore parsing context.
*/
ctx = (asn_struct_ctx_t *)((char *)st + specs->ctx_offset);
/*
* Phases of XER/XML processing:
* Phase 0: Check that the opening tag matches our expectations.
* Phase 1: Processing body and reacting on closing tag.
* Phase 2: Processing inner type.
* Phase 3: Skipping unknown extensions.
* Phase 4: PHASED OUT
*/
for (edx = ctx->step; ctx->phase <= 3;)
{
pxer_chunk_type_e ch_type; /* XER chunk type */
ssize_t ch_size; /* Chunk size */
xer_check_tag_e tcv; /* Tag check value */
asn_TYPE_member_t *elm;
int n;
/*
* Go inside the inner member of a sequence.
*/
if (ctx->phase == 2)
{
asn_dec_rval_t tmprval;
void *memb_ptr; /* Pointer to the member */
void **memb_ptr2; /* Pointer to that pointer */
elm = &td->elements[edx];
if (elm->flags & ATF_POINTER)
{
/* Member is a pointer to another structure */
memb_ptr2 =
(void **)((char *)st + elm->memb_offset);
}
else
{
memb_ptr = (char *)st + elm->memb_offset;
memb_ptr2 = &memb_ptr;
}
/* Invoke the inner type decoder, m.b. multiple times */
tmprval = elm->type->xer_decoder(opt_codec_ctx, elm->type,
memb_ptr2, elm->name,
buf_ptr, size);
XER_ADVANCE(tmprval.consumed);
if (tmprval.code != RC_OK)
{
RETURN(tmprval.code);
}
ctx->phase = 1; /* Back to body processing */
ctx->step = ++edx;
ASN_DEBUG("XER/SEQUENCE phase => %d, step => %d",
ctx->phase, ctx->step);
/* Fall through */
}
/*
* Get the next part of the XML stream.
*/
ch_size = xer_next_token(&ctx->context, buf_ptr, size, &ch_type);
switch (ch_size)
{
case -1:
RETURN(RC_FAIL);
case 0:
RETURN(RC_WMORE);
default:
switch (ch_type)
{
case PXER_COMMENT: /* Got XML comment */
case PXER_TEXT: /* Ignore free-standing text */
XER_ADVANCE(ch_size); /* Skip silently */
continue;
case PXER_TAG:
break; /* Check the rest down there */
}
}
tcv = xer_check_tag(buf_ptr, ch_size, xml_tag);
ASN_DEBUG("XER/SEQUENCE: tcv = %d, ph=%d [%s]", tcv, ctx->phase,
xml_tag);
/* Skip the extensions section */
if (ctx->phase == 3)
{
switch (xer_skip_unknown(tcv, &ctx->left))
{
case -1:
ctx->phase = 4;
RETURN(RC_FAIL);
case 0:
XER_ADVANCE(ch_size);
continue;
case 1:
XER_ADVANCE(ch_size);
ctx->phase = 1;
continue;
case 2:
ctx->phase = 1;
break;
}
}
switch (tcv)
{
case XCT_CLOSING:
if (ctx->phase == 0)
{
break;
}
ctx->phase = 0;
/* Fall through */
case XCT_BOTH:
if (ctx->phase == 0)
{
if (edx >= td->elements_count ||
/* Explicit OPTIONAL specs reaches the end
*/
(edx + elements[edx].optional ==
td->elements_count) ||
/* All extensions are optional */
(IN_EXTENSION_GROUP(specs, edx) &&
specs->ext_before > td->elements_count))
{
XER_ADVANCE(ch_size);
ctx->phase = 4; /* Phase out */
RETURN(RC_OK);
}
else
{
ASN_DEBUG(
"Premature end of XER SEQUENCE");
RETURN(RC_FAIL);
}
}
/* Fall through */
case XCT_OPENING:
if (ctx->phase == 0)
{
XER_ADVANCE(ch_size);
ctx->phase = 1; /* Processing body phase */
continue;
}
/* Fall through */
case XCT_UNKNOWN_OP:
case XCT_UNKNOWN_BO:
ASN_DEBUG("XER/SEQUENCE: tcv=%d, ph=%d, edx=%d", tcv,
ctx->phase, edx);
if (ctx->phase != 1)
{
break; /* Really unexpected */
}
if (edx < td->elements_count)
{
/*
* Search which member corresponds to this tag.
*/
edx_end = edx + elements[edx].optional + 1;
if (edx_end > td->elements_count)
{
edx_end = td->elements_count;
}
for (n = edx; n < edx_end; n++)
{
elm = &td->elements[n];
tcv = xer_check_tag(buf_ptr, ch_size,
elm->name);
switch (tcv)
{
case XCT_BOTH:
case XCT_OPENING:
/*
* Process this member.
*/
ctx->step = edx = n;
ctx->phase = 2;
break;
case XCT_UNKNOWN_OP:
case XCT_UNKNOWN_BO:
continue;
default:
n = edx_end;
break; /* Phase out */
}
break;
}
if (n != edx_end)
{
continue;
}
}
else
{
ASN_DEBUG("Out of defined members: %d/%d", edx,
td->elements_count);
}
/* It is expected extension */
if (IN_EXTENSION_GROUP(
specs, edx + (edx < td->elements_count
? elements[edx].optional
: 0)))
{
ASN_DEBUG("Got anticipated extension at %d",
edx);
/*
* Check for (XCT_BOTH or XCT_UNKNOWN_BO)
* By using a mask. Only record a pure
* <opening> tags.
*/
if (tcv & XCT_CLOSING)
{
/* Found </extension> without body */
}
else
{
ctx->left = 1;
ctx->phase = 3; /* Skip ...'s */
}
XER_ADVANCE(ch_size);
continue;
}
/* Fall through */
default:
break;
}
ASN_DEBUG("Unexpected XML tag in SEQUENCE [%c%c%c%c%c%c]",
size > 0 ? ((const char *)buf_ptr)[0] : '.',
size > 1 ? ((const char *)buf_ptr)[1] : '.',
size > 2 ? ((const char *)buf_ptr)[2] : '.',
size > 3 ? ((const char *)buf_ptr)[3] : '.',
size > 4 ? ((const char *)buf_ptr)[4] : '.',
size > 5 ? ((const char *)buf_ptr)[5] : '.');
break;
}
ctx->phase = 4; /* "Phase out" on hard failure */
RETURN(RC_FAIL);
}
asn_enc_rval_t SEQUENCE_encode_xer(asn_TYPE_descriptor_t *td, void *sptr,
int ilevel, enum xer_encoder_flags_e flags,
asn_app_consume_bytes_f *cb, void *app_key)
{
asn_enc_rval_t er;
int xcan = (flags & XER_F_CANONICAL);
int edx;
if (!sptr)
{
_ASN_ENCODE_FAILED;
}
er.encoded = 0;
for (edx = 0; edx < td->elements_count; edx++)
{
asn_enc_rval_t tmper;
asn_TYPE_member_t *elm = &td->elements[edx];
void *memb_ptr;
const char *mname = elm->name;
unsigned int mlen = strlen(mname);
if (elm->flags & ATF_POINTER)
{
memb_ptr = *(void **)((char *)sptr + elm->memb_offset);
if (!memb_ptr)
{
if (elm->optional)
{
continue;
}
/* Mandatory element is missing */
_ASN_ENCODE_FAILED;
}
}
else
{
memb_ptr = (void *)((char *)sptr + elm->memb_offset);
}
if (!xcan)
{
_i_ASN_TEXT_INDENT(1, ilevel);
}
_ASN_CALLBACK3("<", 1, mname, mlen, ">", 1);
/* Print the member itself */
tmper = elm->type->xer_encoder(elm->type, memb_ptr, ilevel + 1,
flags, cb, app_key);
if (tmper.encoded == -1)
{
return tmper;
}
_ASN_CALLBACK3("</", 2, mname, mlen, ">", 1);
er.encoded += 5 + (2 * mlen) + tmper.encoded;
}
if (!xcan)
{
_i_ASN_TEXT_INDENT(1, ilevel - 1);
}
_ASN_ENCODED_OK(er);
cb_failed:
_ASN_ENCODE_FAILED;
}
int SEQUENCE_print(asn_TYPE_descriptor_t *td, const void *sptr, int ilevel,
asn_app_consume_bytes_f *cb, void *app_key)
{
int edx;
int ret;
if (!sptr)
{
return (cb("<absent>", 8, app_key) < 0) ? -1 : 0;
}
/* Dump preamble */
if (cb(td->name, strlen(td->name), app_key) < 0 ||
cb(" ::= {", 6, app_key) < 0)
{
return -1;
}
for (edx = 0; edx < td->elements_count; edx++)
{
asn_TYPE_member_t *elm = &td->elements[edx];
const void *memb_ptr;
if (elm->flags & ATF_POINTER)
{
memb_ptr = *(const void *const *)((const char *)sptr +
elm->memb_offset);
if (!memb_ptr)
{
if (elm->optional)
{
continue;
}
/* Print <absent> line */
/* Fall through */
}
}
else
{
memb_ptr =
(const void *)((const char *)sptr + elm->memb_offset);
}
/* Indentation */
_i_INDENT(1);
/* Print the member's name and stuff */
if (cb(elm->name, strlen(elm->name), app_key) < 0 ||
cb(": ", 2, app_key) < 0)
{
return -1;
}
/* Print the member itself */
ret = elm->type->print_struct(elm->type, memb_ptr, ilevel + 1, cb,
app_key);
if (ret)
{
return ret;
}
}
ilevel--;
_i_INDENT(1);
return (cb("}", 1, app_key) < 0) ? -1 : 0;
}
void SEQUENCE_free(asn_TYPE_descriptor_t *td, void *sptr, int contents_only)
{
int edx;
if (!td || !sptr)
{
return;
}
ASN_DEBUG("Freeing %s as SEQUENCE", td->name);
for (edx = 0; edx < td->elements_count; edx++)
{
asn_TYPE_member_t *elm = &td->elements[edx];
void *memb_ptr;
if (elm->flags & ATF_POINTER)
{
memb_ptr = *(void **)((char *)sptr + elm->memb_offset);
if (memb_ptr)
{
ASN_STRUCT_FREE(*elm->type, memb_ptr);
}
}
else
{
memb_ptr = (void *)((char *)sptr + elm->memb_offset);
ASN_STRUCT_FREE_CONTENTS_ONLY(*elm->type, memb_ptr);
}
}
if (!contents_only)
{
FREEMEM(sptr);
}
}
int SEQUENCE_constraint(asn_TYPE_descriptor_t *td, const void *sptr,
asn_app_constraint_failed_f *ctfailcb, void *app_key)
{
int edx;
if (!sptr)
{
_ASN_CTFAIL(app_key, td, sptr, "%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
/*
* Iterate over structure members and check their validity.
*/
for (edx = 0; edx < td->elements_count; edx++)
{
asn_TYPE_member_t *elm = &td->elements[edx];
const void *memb_ptr;
if (elm->flags & ATF_POINTER)
{
memb_ptr = *(const void *const *)((const char *)sptr +
elm->memb_offset);
if (!memb_ptr)
{
if (elm->optional)
{
continue;
}
_ASN_CTFAIL(
app_key, td, sptr,
"%s: mandatory element %s absent (%s:%d)",
td->name, elm->name, __FILE__, __LINE__);
return -1;
}
}
else
{
memb_ptr =
(const void *)((const char *)sptr + elm->memb_offset);
}
if (elm->memb_constraints)
{
int ret = elm->memb_constraints(elm->type, memb_ptr,
ctfailcb, app_key);
if (ret)
{
return ret;
}
}
else
{
int ret = elm->type->check_constraints(elm->type, memb_ptr,
ctfailcb, app_key);
if (ret)
{
return ret;
}
/*
* Cannot inherit it earlier:
* need to make sure we get the updated version.
*/
elm->memb_constraints = elm->type->check_constraints;
}
}
return 0;
}
asn_dec_rval_t SEQUENCE_decode_uper(asn_codec_ctx_t *opt_codec_ctx,
asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints,
void **sptr, asn_per_data_t *pd)
{
asn_SEQUENCE_specifics_t *specs = (asn_SEQUENCE_specifics_t *)td->specifics;
void *st = *sptr; /* Target structure. */
int extpresent; /* Extension additions are present */
uint8_t *opres; /* Presence of optional root members */
asn_per_data_t opmd;
asn_dec_rval_t rv;
int edx;
(void)constraints;
if (_ASN_STACK_OVERFLOW_CHECK(opt_codec_ctx))
{
_ASN_DECODE_FAILED;
}
if (!st)
{
st = *sptr = CALLOC(1, specs->struct_size);
if (!st)
{
_ASN_DECODE_FAILED;
}
}
ASN_DEBUG("Decoding %s as SEQUENCE (UPER)", td->name);
/* Handle extensions */
if (specs->ext_before >= 0)
{
extpresent = per_get_few_bits(pd, 1);
if (extpresent < 0)
{
_ASN_DECODE_STARVED;
}
}
else
{
extpresent = 0;
}
/* Prepare a place and read-in the presence bitmap */
memset(&opmd, 0, sizeof(opmd));
if (specs->roms_count)
{
opres = (uint8_t *)MALLOC(((specs->roms_count + 7) >> 3) + 1);
if (!opres)
{
_ASN_DECODE_FAILED;
}
/* Get the presence map */
if (per_get_many_bits(pd, opres, 0, specs->roms_count))
{
FREEMEM(opres);
_ASN_DECODE_STARVED;
}
opmd.buffer = opres;
opmd.nbits = specs->roms_count;
ASN_DEBUG("Read in presence bitmap for %s of %d bits (%x..)",
td->name, specs->roms_count, *opres);
}
else
{
opres = 0;
}
/*
* Get the sequence ROOT elements.
*/
for (edx = 0; edx < td->elements_count; edx++)
{
asn_TYPE_member_t *elm = &td->elements[edx];
void *memb_ptr; /* Pointer to the member */
void **memb_ptr2; /* Pointer to that pointer */
if (IN_EXTENSION_GROUP(specs, edx))
{
continue;
}
/* Fetch the pointer to this member */
if (elm->flags & ATF_POINTER)
{
memb_ptr2 = (void **)((char *)st + elm->memb_offset);
}
else
{
memb_ptr = (char *)st + elm->memb_offset;
memb_ptr2 = &memb_ptr;
}
/* Deal with optionality */
if (elm->optional)
{
int present = per_get_few_bits(&opmd, 1);
ASN_DEBUG("Member %s->%s is optional, p=%d (%d->%d)",
td->name, elm->name, present, (int)opmd.nboff,
(int)opmd.nbits);
if (present == 0)
{
/* This element is not present */
if (elm->default_value)
{
/* Fill-in DEFAULT */
if (elm->default_value(1, memb_ptr2))
{
FREEMEM(opres);
_ASN_DECODE_FAILED;
}
ASN_DEBUG("Filled-in default");
}
/* The member is just not present */
continue;
}
/* Fall through */
}
/* Fetch the member from the stream */
ASN_DEBUG("Decoding member %s in %s", elm->name, td->name);
rv = elm->type->uper_decoder(opt_codec_ctx, elm->type,
elm->per_constraints, memb_ptr2, pd);
if (rv.code != RC_OK)
{
ASN_DEBUG("Failed decode %s in %s", elm->name, td->name);
FREEMEM(opres);
return rv;
}
}
/* Optionality map is not needed anymore */
FREEMEM(opres);
/*
* Deal with extensions.
*/
if (extpresent)
{
ssize_t bmlength;
uint8_t *epres; /* Presence of extension members */
asn_per_data_t epmd;
bmlength = uper_get_nslength(pd);
if (bmlength < 0)
{
_ASN_DECODE_STARVED;
}
ASN_DEBUG("Extensions %d present in %s", bmlength, td->name);
epres = (uint8_t *)MALLOC((bmlength + 15) >> 3);
if (!epres)
{
_ASN_DECODE_STARVED;
}
/* Get the extensions map */
if (per_get_many_bits(pd, epres, 0, bmlength))
{
FREEMEM(epres);
_ASN_DECODE_STARVED;
}
memset(&epmd, 0, sizeof(epmd));
epmd.buffer = epres;
epmd.nbits = bmlength;
ASN_DEBUG("Read in extensions bitmap for %s of %d bits (%x..)",
td->name, bmlength, *epres);
/* Go over extensions and read them in */
for (edx = specs->ext_after + 1; edx < td->elements_count; edx++)
{
asn_TYPE_member_t *elm = &td->elements[edx];
void *memb_ptr; /* Pointer to the member */
void **memb_ptr2; /* Pointer to that pointer */
int present;
if (!IN_EXTENSION_GROUP(specs, edx))
{
ASN_DEBUG("%d is not extension", edx);
continue;
}
/* Fetch the pointer to this member */
if (elm->flags & ATF_POINTER)
{
memb_ptr2 =
(void **)((char *)st + elm->memb_offset);
}
else
{
memb_ptr = (void *)((char *)st + elm->memb_offset);
memb_ptr2 = &memb_ptr;
}
present = per_get_few_bits(&epmd, 1);
if (present <= 0)
{
if (present < 0)
{
break; /* No more extensions */
}
continue;
}
ASN_DEBUG("Decoding member %s in %s %p", elm->name,
td->name, *memb_ptr2);
rv =
uper_open_type_get(opt_codec_ctx, elm->type,
elm->per_constraints, memb_ptr2, pd);
if (rv.code != RC_OK)
{
FREEMEM(epres);
return rv;
}
}
/* Skip over overflow extensions which aren't present
* in this system's version of the protocol */
for (;;)
{
ASN_DEBUG("Getting overflow extensions");
switch (per_get_few_bits(&epmd, 1))
{
case -1:
break;
case 0:
continue;
default:
if (uper_open_type_skip(opt_codec_ctx, pd))
{
FREEMEM(epres);
_ASN_DECODE_STARVED;
}
}
break;
}
FREEMEM(epres);
}
/* Fill DEFAULT members in extensions */
for (edx = specs->roms_count; edx < specs->roms_count + specs->aoms_count;
edx++)
{
asn_TYPE_member_t *elm = &td->elements[edx];
void **memb_ptr2; /* Pointer to member pointer */
if (!elm->default_value)
{
continue;
}
/* Fetch the pointer to this member */
if (elm->flags & ATF_POINTER)
{
memb_ptr2 = (void **)((char *)st + elm->memb_offset);
if (*memb_ptr2)
{
continue;
}
}
else
{
continue; /* Extensions are all optionals */
}
/* Set default value */
if (elm->default_value(1, memb_ptr2))
{
_ASN_DECODE_FAILED;
}
}
rv.consumed = 0;
rv.code = RC_OK;
return rv;
}
static int SEQUENCE_handle_extensions(asn_TYPE_descriptor_t *td, void *sptr,
asn_per_outp_t *po1, asn_per_outp_t *po2)
{
asn_SEQUENCE_specifics_t *specs = (asn_SEQUENCE_specifics_t *)td->specifics;
int exts_present = 0;
int exts_count = 0;
int edx;
if (specs->ext_before < 0)
{
return 0;
}
/* Find out which extensions are present */
for (edx = specs->ext_after + 1; edx < td->elements_count; edx++)
{
asn_TYPE_member_t *elm = &td->elements[edx];
void *memb_ptr; /* Pointer to the member */
void **memb_ptr2; /* Pointer to that pointer */
int present;
if (!IN_EXTENSION_GROUP(specs, edx))
{
ASN_DEBUG("%s (@%d) is not extension", elm->type->name,
edx);
continue;
}
/* Fetch the pointer to this member */
if (elm->flags & ATF_POINTER)
{
memb_ptr2 = (void **)((char *)sptr + elm->memb_offset);
present = (*memb_ptr2 != 0);
}
else
{
memb_ptr = (void *)((char *)sptr + elm->memb_offset);
memb_ptr2 = &memb_ptr;
present = 1;
}
ASN_DEBUG("checking %s (@%d) present => %d", elm->type->name, edx,
present);
exts_count++;
exts_present += present;
/* Encode as presence marker */
if (po1 && per_put_few_bits(po1, present, 1))
{
return -1;
}
/* Encode as open type field */
if (po2 && present &&
uper_open_type_put(elm->type, elm->per_constraints, *memb_ptr2,
po2))
{
return -1;
}
}
return exts_present ? exts_count : 0;
}
asn_enc_rval_t SEQUENCE_encode_uper(asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints,
void *sptr, asn_per_outp_t *po)
{
asn_SEQUENCE_specifics_t *specs = (asn_SEQUENCE_specifics_t *)td->specifics;
asn_enc_rval_t er;
int n_extensions;
int edx;
int i;
(void)constraints;
if (!sptr)
{
_ASN_ENCODE_FAILED;
}
er.encoded = 0;
ASN_DEBUG("Encoding %s as SEQUENCE (UPER)", td->name);
/*
* X.691#18.1 Whether structure is extensible
* and whether to encode extensions
*/
if (specs->ext_before >= 0)
{
n_extensions = SEQUENCE_handle_extensions(td, sptr, 0, 0);
per_put_few_bits(po, n_extensions ? 1 : 0, 1);
}
else
{
n_extensions = 0; /* There are no extensions to encode */
}
/* Encode a presence bitmap */
for (i = 0; i < specs->roms_count; i++)
{
asn_TYPE_member_t *elm;
void *memb_ptr; /* Pointer to the member */
void **memb_ptr2; /* Pointer to that pointer */
int present;
edx = specs->oms[i];
elm = &td->elements[edx];
/* Fetch the pointer to this member */
if (elm->flags & ATF_POINTER)
{
memb_ptr2 = (void **)((char *)sptr + elm->memb_offset);
present = (*memb_ptr2 != 0);
}
else
{
memb_ptr = (void *)((char *)sptr + elm->memb_offset);
memb_ptr2 = &memb_ptr;
present = 1;
}
/* Eliminate default values */
if (present && elm->default_value &&
elm->default_value(0, memb_ptr2) == 1)
{
present = 0;
}
ASN_DEBUG("Element %s %s %s->%s is %s",
elm->flags & ATF_POINTER ? "ptr" : "inline",
elm->default_value ? "def" : "wtv", td->name, elm->name,
present ? "present" : "absent");
if (per_put_few_bits(po, present, 1))
{
_ASN_ENCODE_FAILED;
}
}
/*
* Encode the sequence ROOT elements.
*/
ASN_DEBUG("ext_after = %d, ec = %d, eb = %d", specs->ext_after,
td->elements_count, specs->ext_before);
for (edx = 0; edx < ((specs->ext_after < 0) ? td->elements_count
: specs->ext_before - 1);
edx++)
{
asn_TYPE_member_t *elm = &td->elements[edx];
void *memb_ptr; /* Pointer to the member */
void **memb_ptr2; /* Pointer to that pointer */
if (IN_EXTENSION_GROUP(specs, edx))
{
continue;
}
ASN_DEBUG("About to encode %s", elm->type->name);
/* Fetch the pointer to this member */
if (elm->flags & ATF_POINTER)
{
memb_ptr2 = (void **)((char *)sptr + elm->memb_offset);
if (!*memb_ptr2)
{
ASN_DEBUG("Element %s %d not present", elm->name,
edx);
if (elm->optional)
{
continue;
}
/* Mandatory element is missing */
_ASN_ENCODE_FAILED;
}
}
else
{
memb_ptr = (void *)((char *)sptr + elm->memb_offset);
memb_ptr2 = &memb_ptr;
}
/* Eliminate default values */
if (elm->default_value && elm->default_value(0, memb_ptr2) == 1)
{
continue;
}
ASN_DEBUG("Encoding %s->%s", td->name, elm->name);
er = elm->type->uper_encoder(elm->type, elm->per_constraints,
*memb_ptr2, po);
if (er.encoded == -1)
{
return er;
}
}
/* No extensions to encode */
if (!n_extensions)
{
_ASN_ENCODED_OK(er);
}
ASN_DEBUG("Length of %d bit-map", n_extensions);
/* #18.8. Write down the presence bit-map length. */
if (uper_put_nslength(po, n_extensions))
{
_ASN_ENCODE_FAILED;
}
ASN_DEBUG("Bit-map of %d elements", n_extensions);
/* #18.7. Encoding the extensions presence bit-map. */
/* TODO: act upon NOTE in #18.7 for canonical PER */
if (SEQUENCE_handle_extensions(td, sptr, po, 0) != n_extensions)
{
_ASN_ENCODE_FAILED;
}
ASN_DEBUG("Writing %d extensions", n_extensions);
/* #18.9. Encode extensions as open type fields. */
if (SEQUENCE_handle_extensions(td, sptr, 0, po) != n_extensions)
{
_ASN_ENCODE_FAILED;
}
_ASN_ENCODED_OK(er);
}