gnss-sdr/src/algorithms/tracking/gnuradio_blocks/dll_pll_veml_tracking_fpga.cc

1999 lines
100 KiB
C++

/*!
* \file dll_pll_veml_tracking_fpga.cc
* \brief Implementation of a code DLL + carrier PLL tracking block using an FPGA
* \author Marc Majoral, 2019. marc.majoral(at)cttc.es
* \author Javier Arribas, 2019. jarribas(at)cttc.es
*
* Code DLL + carrier PLL according to the algorithms described in:
* [1] K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency
* Approach, Birkhauser, 2007
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "dll_pll_veml_tracking_fpga.h"
#include "GPS_L1_CA.h"
#include "GPS_L2C.h"
#include "GPS_L5.h"
#include "Galileo_E1.h"
#include "Galileo_E5a.h"
#include "MATH_CONSTANTS.h"
#include "fpga_multicorrelator.h"
#include "gnss_sdr_create_directory.h"
#include "gnss_synchro.h"
#include "gps_sdr_signal_processing.h"
#include "lock_detectors.h"
#include "tracking_discriminators.h"
#include <glog/logging.h>
#include <gnuradio/io_signature.h> // for io_signature
#include <gnuradio/thread/thread.h> // for scoped_lock
#include <gsl/gsl>
#include <matio.h> // for Mat_VarCreate
#include <pmt/pmt_sugar.h> // for mp
#include <volk_gnsssdr/volk_gnsssdr.h>
#include <algorithm> // for fill_n
#include <cmath> // for fmod, round, floor
#include <exception> // for exception
#include <iostream> // for cout, cerr
#include <map>
#include <numeric>
#include <vector>
#if HAS_STD_FILESYSTEM
#if HAS_STD_FILESYSTEM_EXPERIMENTAL
#include <experimental/filesystem>
namespace fs = std::experimental::filesystem;
#else
#include <filesystem>
namespace fs = std::filesystem;
#endif
#else
#include <boost/filesystem/path.hpp>
namespace fs = boost::filesystem;
#endif
dll_pll_veml_tracking_fpga_sptr dll_pll_veml_make_tracking_fpga(const Dll_Pll_Conf_Fpga &conf_)
{
return dll_pll_veml_tracking_fpga_sptr(new dll_pll_veml_tracking_fpga(conf_));
}
dll_pll_veml_tracking_fpga::dll_pll_veml_tracking_fpga(const Dll_Pll_Conf_Fpga &conf_) : gr::block("dll_pll_veml_tracking_fpga", gr::io_signature::make(0, 0, sizeof(lv_16sc_t)),
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
{
// prevent telemetry symbols accumulation in output buffers
this->set_max_noutput_items(1);
trk_parameters = conf_;
// Telemetry bit synchronization message port input
this->message_port_register_out(pmt::mp("events"));
this->set_relative_rate(1.0 / static_cast<double>(trk_parameters.vector_length));
// Telemetry message port input
this->message_port_register_in(pmt::mp("telemetry_to_trk"));
this->set_msg_handler(pmt::mp("telemetry_to_trk"), boost::bind(&dll_pll_veml_tracking_fpga::msg_handler_telemetry_to_trk, this, _1));
// initialize internal vars
d_dll_filt_history.set_capacity(1000);
d_veml = false;
d_cloop = true;
d_pull_in_transitory = true;
d_code_chip_rate = 0.0;
d_secondary_code_length = 0U;
d_secondary_code_string = nullptr;
d_data_secondary_code_length = 0U;
d_data_secondary_code_string = nullptr;
signal_type = std::string(trk_parameters.signal);
interchange_iq = false;
std::map<std::string, std::string> map_signal_pretty_name;
map_signal_pretty_name["1C"] = "L1 C/A";
map_signal_pretty_name["1B"] = "E1";
map_signal_pretty_name["1G"] = "L1 C/A";
map_signal_pretty_name["2S"] = "L2C";
map_signal_pretty_name["2G"] = "L2 C/A";
map_signal_pretty_name["5X"] = "E5a";
map_signal_pretty_name["L5"] = "L5";
signal_pretty_name = map_signal_pretty_name[signal_type];
d_code_samples_per_chip = trk_parameters.code_samples_per_chip; // number of samples per chip
d_code_length_chips = trk_parameters.code_length_chips;
d_extended_correlation_in_fpga = trk_parameters.extended_correlation_in_fpga;
d_current_extended_correlation_in_fpga = false;
d_extend_fpga_integration_periods = trk_parameters.extend_fpga_integration_periods; // by default
d_fpga_integration_period = trk_parameters.fpga_integration_period; // by default
d_current_fpga_integration_period = 1;
d_sc_demodulate_enabled = false;
if (trk_parameters.system == 'G')
{
systemName = "GPS";
if (signal_type == "1C")
{
d_signal_carrier_freq = GPS_L1_FREQ_HZ;
d_code_period = GPS_L1_CA_CODE_PERIOD_S;
d_code_chip_rate = GPS_L1_CA_CODE_RATE_CPS;
d_correlation_length_ms = 1;
// GPS L1 C/A does not have pilot component nor secondary code
d_secondary = false;
trk_parameters.track_pilot = false;
// symbol integration: 20 trk symbols (20 ms) = 1 tlm bit
// set the preamble in the secondary code acquisition to obtain tlm symbol synchronization
d_secondary_code_length = static_cast<uint32_t>(GPS_CA_PREAMBLE_LENGTH_SYMBOLS);
d_secondary_code_string = const_cast<std::string *>(&GPS_CA_PREAMBLE_SYMBOLS_STR);
d_symbols_per_bit = GPS_CA_TELEMETRY_SYMBOLS_PER_BIT;
}
else if (signal_type == "2S")
{
d_signal_carrier_freq = GPS_L2_FREQ_HZ;
d_code_period = GPS_L2_M_PERIOD_S;
d_code_chip_rate = GPS_L2_M_CODE_RATE_CPS;
// GPS L2C has 1 trk symbol (20 ms) per tlm bit, no symbol integration required
d_symbols_per_bit = GPS_L2_SAMPLES_PER_SYMBOL;
d_correlation_length_ms = 20;
// GPS L2 does not have pilot component nor secondary code
d_secondary = false;
trk_parameters.track_pilot = false;
}
else if (signal_type == "L5")
{
d_signal_carrier_freq = GPS_L5_FREQ_HZ;
d_code_period = GPS_L5I_PERIOD_S;
d_code_chip_rate = GPS_L5I_CODE_RATE_CPS;
// symbol integration: 10 trk symbols (10 ms) = 1 tlm bit
d_symbols_per_bit = GPS_L5_SAMPLES_PER_SYMBOL;
d_correlation_length_ms = 1;
d_secondary = true;
if (d_extended_correlation_in_fpga == true)
{
if (trk_parameters.extend_correlation_symbols > 1)
{
d_sc_demodulate_enabled = true;
}
}
if (trk_parameters.track_pilot)
{
// synchronize pilot secondary code
d_secondary_code_length = static_cast<uint32_t>(GPS_L5Q_NH_CODE_LENGTH);
d_secondary_code_string = const_cast<std::string *>(&GPS_L5Q_NH_CODE_STR);
// remove data secondary code
// remove Neuman-Hofman Code (see IS-GPS-705D)
d_data_secondary_code_length = static_cast<uint32_t>(GPS_L5I_NH_CODE_LENGTH);
d_data_secondary_code_string = const_cast<std::string *>(&GPS_L5I_NH_CODE_STR);
signal_pretty_name = signal_pretty_name + "Q";
}
else
{
// synchronize and remove data secondary code
// remove Neuman-Hofman Code (see IS-GPS-705D)
d_secondary_code_length = static_cast<uint32_t>(GPS_L5I_NH_CODE_LENGTH);
d_secondary_code_string = const_cast<std::string *>(&GPS_L5I_NH_CODE_STR);
signal_pretty_name = signal_pretty_name + "I";
interchange_iq = true;
}
}
else
{
LOG(WARNING) << "Invalid Signal argument when instantiating tracking blocks";
std::cerr << "Invalid Signal argument when instantiating tracking blocks" << std::endl;
d_correlation_length_ms = 1;
d_secondary = false;
d_signal_carrier_freq = 0.0;
d_code_period = 0.0;
d_symbols_per_bit = 0;
}
}
else if (trk_parameters.system == 'E')
{
systemName = "Galileo";
if (signal_type == "1B")
{
d_signal_carrier_freq = GALILEO_E1_FREQ_HZ;
d_code_period = GALILEO_E1_CODE_PERIOD_S;
d_code_chip_rate = GALILEO_E1_CODE_CHIP_RATE_CPS;
// Galileo E1b has 1 trk symbol (4 ms) per tlm bit, no symbol integration required
d_symbols_per_bit = 1;
d_correlation_length_ms = 4;
d_veml = true;
if (trk_parameters.track_pilot)
{
d_secondary = true;
d_secondary_code_length = static_cast<uint32_t>(GALILEO_E1_C_SECONDARY_CODE_LENGTH);
d_secondary_code_string = const_cast<std::string *>(&GALILEO_E1_C_SECONDARY_CODE);
signal_pretty_name = signal_pretty_name + "C";
}
else
{
d_secondary = false;
signal_pretty_name = signal_pretty_name + "B";
}
// Note that E1-B and E1-C are in anti-phase, NOT IN QUADRATURE. See Galileo ICD.
}
else if (signal_type == "5X")
{
d_signal_carrier_freq = GALILEO_E5A_FREQ_HZ;
d_code_period = GALILEO_E5A_CODE_PERIOD_S;
d_code_chip_rate = GALILEO_E5A_CODE_CHIP_RATE_CPS;
d_symbols_per_bit = 20;
d_correlation_length_ms = 1;
d_secondary = true;
if (d_extended_correlation_in_fpga == true)
{
if (trk_parameters.extend_correlation_symbols > 1)
{
d_sc_demodulate_enabled = true;
}
}
if (trk_parameters.track_pilot)
{
// synchronize pilot secondary code
d_secondary_code_length = static_cast<uint32_t>(GALILEO_E5A_Q_SECONDARY_CODE_LENGTH);
signal_pretty_name = signal_pretty_name + "Q";
// remove data secondary code
d_data_secondary_code_length = static_cast<uint32_t>(GALILEO_E5A_I_SECONDARY_CODE_LENGTH);
d_data_secondary_code_string = const_cast<std::string *>(&GALILEO_E5A_I_SECONDARY_CODE);
// the pilot secondary code depends on PRN and it is initialized later
}
else
{
// synchronize and remove data secondary code
d_secondary_code_length = static_cast<uint32_t>(GALILEO_E5A_I_SECONDARY_CODE_LENGTH);
d_secondary_code_string = const_cast<std::string *>(&GALILEO_E5A_I_SECONDARY_CODE);
signal_pretty_name = signal_pretty_name + "I";
interchange_iq = true;
}
}
else
{
LOG(WARNING) << "Invalid Signal argument when instantiating tracking blocks";
std::cout << "Invalid Signal argument when instantiating tracking blocks" << std::endl;
d_correlation_length_ms = 1;
d_secondary = false;
d_signal_carrier_freq = 0.0;
d_code_period = 0.0;
d_symbols_per_bit = 0;
}
}
else
{
LOG(WARNING) << "Invalid System argument when instantiating tracking blocks";
std::cerr << "Invalid System argument when instantiating tracking blocks" << std::endl;
d_correlation_length_ms = 1;
d_secondary = false;
d_signal_carrier_freq = 0.0;
d_code_period = 0.0;
d_symbols_per_bit = 0;
}
T_chip_seconds = 0.0;
T_prn_seconds = 0.0;
T_prn_samples = 0.0;
K_blk_samples = 0.0;
// Initialize tracking ==========================================
d_code_loop_filter = Tracking_loop_filter(d_code_period, trk_parameters.dll_bw_hz, trk_parameters.dll_filter_order, false);
d_carrier_loop_filter.set_params(trk_parameters.fll_bw_hz, trk_parameters.pll_bw_hz, trk_parameters.pll_filter_order);
// correlator outputs (scalar)
if (d_veml)
{
// Very-Early, Early, Prompt, Late, Very-Late
d_n_correlator_taps = 5;
}
else
{
// Early, Prompt, Late
d_n_correlator_taps = 3;
}
d_correlator_outs = static_cast<gr_complex *>(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
d_local_code_shift_chips = static_cast<float *>(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(float), volk_gnsssdr_get_alignment()));
// map memory pointers of correlator outputs
if (d_veml)
{
d_Very_Early = &d_correlator_outs[0];
d_Early = &d_correlator_outs[1];
d_Prompt = &d_correlator_outs[2];
d_Late = &d_correlator_outs[3];
d_Very_Late = &d_correlator_outs[4];
d_local_code_shift_chips[0] = -trk_parameters.very_early_late_space_chips * static_cast<float>(d_code_samples_per_chip);
d_local_code_shift_chips[1] = -trk_parameters.early_late_space_chips * static_cast<float>(d_code_samples_per_chip);
d_local_code_shift_chips[2] = 0.0;
d_local_code_shift_chips[3] = trk_parameters.early_late_space_chips * static_cast<float>(d_code_samples_per_chip);
d_local_code_shift_chips[4] = trk_parameters.very_early_late_space_chips * static_cast<float>(d_code_samples_per_chip);
d_prompt_data_shift = &d_local_code_shift_chips[2];
}
else
{
d_Very_Early = nullptr;
d_Early = &d_correlator_outs[0];
d_Prompt = &d_correlator_outs[1];
d_Late = &d_correlator_outs[2];
d_Very_Late = nullptr;
d_local_code_shift_chips[0] = -trk_parameters.early_late_space_chips * static_cast<float>(d_code_samples_per_chip);
d_local_code_shift_chips[1] = 0.0;
d_local_code_shift_chips[2] = trk_parameters.early_late_space_chips * static_cast<float>(d_code_samples_per_chip);
d_prompt_data_shift = &d_local_code_shift_chips[1];
}
if (trk_parameters.extend_correlation_symbols > 1)
{
d_enable_extended_integration = true;
}
else
{
d_enable_extended_integration = false;
trk_parameters.extend_correlation_symbols = 1;
}
// --- Initializations ---
d_Prompt_circular_buffer.set_capacity(d_secondary_code_length);
// Initial code frequency basis of NCO
d_code_freq_chips = d_code_chip_rate;
// Residual code phase (in chips)
d_rem_code_phase_samples = 0.0;
d_rem_code_phase_samples_prev = 0.0; // previously calculated d_rem_code_phase_samples
// Residual carrier phase
d_rem_carr_phase_rad = 0.0;
// sample synchronization
d_sample_counter = 0ULL;
d_acq_sample_stamp = 0ULL;
d_current_integration_length_samples = static_cast<int32_t>(trk_parameters.vector_length);
d_next_integration_length_samples = d_current_integration_length_samples;
d_current_correlation_time_s = 0.0;
// CN0 estimation and lock detector buffers
d_cn0_estimation_counter = 0;
d_Prompt_buffer = std::vector<gr_complex>(trk_parameters.cn0_samples);
d_carrier_lock_test = 1.0;
d_CN0_SNV_dB_Hz = 0.0;
d_carrier_lock_fail_counter = 0;
d_code_lock_fail_counter = 0;
d_carrier_lock_threshold = trk_parameters.carrier_lock_th;
d_Prompt_Data = static_cast<gr_complex *>(volk_gnsssdr_malloc(sizeof(gr_complex), volk_gnsssdr_get_alignment()));
d_cn0_smoother = Exponential_Smoother();
d_cn0_smoother.set_alpha(trk_parameters.cn0_smoother_alpha);
if (d_code_period > 0.0)
{
d_cn0_smoother.set_samples_for_initialization(trk_parameters.cn0_smoother_samples / static_cast<int>(d_code_period * 1000.0));
}
d_carrier_lock_test_smoother = Exponential_Smoother();
d_carrier_lock_test_smoother.set_alpha(trk_parameters.carrier_lock_test_smoother_alpha);
d_carrier_lock_test_smoother.set_min_value(-1.0);
d_carrier_lock_test_smoother.set_offset(0.0);
d_carrier_lock_test_smoother.set_samples_for_initialization(trk_parameters.carrier_lock_test_smoother_samples);
d_acquisition_gnss_synchro = nullptr;
d_channel = 0;
d_acq_code_phase_samples = 0.0;
d_acq_carrier_doppler_hz = 0.0;
d_carrier_doppler_hz = 0.0;
d_acc_carrier_phase_rad = 0.0;
d_extend_correlation_symbols_count = 0;
d_code_phase_step_chips = 0.0;
d_code_phase_rate_step_chips = 0.0;
d_carrier_phase_step_rad = 0.0;
d_carrier_phase_rate_step_rad = 0.0;
d_rem_code_phase_chips = 0.0;
d_state = 1; // initial state: standby
clear_tracking_vars();
if (trk_parameters.smoother_length > 0)
{
d_carr_ph_history.set_capacity(trk_parameters.smoother_length * 2);
d_code_ph_history.set_capacity(trk_parameters.smoother_length * 2);
}
else
{
d_carr_ph_history.set_capacity(1);
d_code_ph_history.set_capacity(1);
}
d_dump = trk_parameters.dump;
d_dump_mat = trk_parameters.dump_mat and d_dump;
if (d_dump)
{
d_dump_filename = trk_parameters.dump_filename;
std::string dump_path;
// Get path
if (d_dump_filename.find_last_of('/') != std::string::npos)
{
std::string dump_filename_ = d_dump_filename.substr(d_dump_filename.find_last_of('/') + 1);
dump_path = d_dump_filename.substr(0, d_dump_filename.find_last_of('/'));
d_dump_filename = dump_filename_;
}
else
{
dump_path = std::string(".");
}
if (d_dump_filename.empty())
{
d_dump_filename = "trk_channel_";
}
// remove extension if any
if (d_dump_filename.substr(1).find_last_of('.') != std::string::npos)
{
d_dump_filename = d_dump_filename.substr(0, d_dump_filename.find_last_of('.'));
}
d_dump_filename = dump_path + fs::path::preferred_separator + d_dump_filename;
// create directory
if (!gnss_sdr_create_directory(dump_path))
{
std::cerr << "GNSS-SDR cannot create dump files for the tracking block. Wrong permissions?" << std::endl;
d_dump = false;
}
}
// create multicorrelator class
std::string device_name = trk_parameters.device_name;
uint32_t dev_file_num = trk_parameters.dev_file_num;
uint32_t num_prev_assigned_ch = trk_parameters.num_prev_assigned_ch;
int32_t *ca_codes = trk_parameters.ca_codes;
int32_t *data_codes = trk_parameters.data_codes;
multicorrelator_fpga = std::make_shared<Fpga_Multicorrelator_8sc>(d_n_correlator_taps, device_name, dev_file_num, num_prev_assigned_ch, ca_codes, data_codes, d_code_length_chips, trk_parameters.track_pilot, d_code_samples_per_chip);
multicorrelator_fpga->set_output_vectors(d_correlator_outs, d_Prompt_Data);
d_sample_counter_next = 0ULL;
d_corrected_doppler = false;
d_worker_is_done = false;
d_stop_tracking = false;
}
void dll_pll_veml_tracking_fpga::msg_handler_telemetry_to_trk(const pmt::pmt_t &msg)
{
try
{
if (pmt::any_ref(msg).type() == typeid(int))
{
int tlm_event;
tlm_event = boost::any_cast<int>(pmt::any_ref(msg));
if (tlm_event == 1)
{
DLOG(INFO) << "Telemetry fault received in ch " << this->d_channel;
gr::thread::scoped_lock lock(d_setlock);
d_carrier_lock_fail_counter = 200000; // force loss-of-lock condition
}
}
}
catch (boost::bad_any_cast &e)
{
LOG(WARNING) << "msg_handler_telemetry_to_trk Bad any cast!";
}
}
void dll_pll_veml_tracking_fpga::start_tracking()
{
// all the calculations that do not require the data from the acquisition module are moved to the
// set_gnss_synchro command, which is received with a valid PRN before the acquisition module starts the
// acquisition process. This is done to minimize the time between the end of the acquisition process and
// the beginning of the tracking process.
// correct the code phase according to the delay between acq and trk
d_acq_code_phase_samples = d_acquisition_gnss_synchro->Acq_delay_samples;
d_acq_carrier_doppler_hz = d_acquisition_gnss_synchro->Acq_doppler_hz;
d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples;
d_carrier_doppler_hz = d_acq_carrier_doppler_hz;
d_carrier_phase_step_rad = PI_2 * d_carrier_doppler_hz / trk_parameters.fs_in;
// filter initialization
d_carrier_loop_filter.initialize(static_cast<float>(d_acq_carrier_doppler_hz)); // initialize the carrier filter
d_corrected_doppler = false;
boost::mutex::scoped_lock lock(d_mutex);
d_worker_is_done = true;
m_condition.notify_one();
}
dll_pll_veml_tracking_fpga::~dll_pll_veml_tracking_fpga()
{
if (d_dump_file.is_open())
{
try
{
d_dump_file.close();
}
catch (const std::exception &ex)
{
LOG(WARNING) << "Exception in destructor " << ex.what();
}
}
if (d_dump_mat)
{
try
{
save_matfile();
}
catch (const std::exception &ex)
{
LOG(WARNING) << "Error saving the .mat file: " << ex.what();
}
}
try
{
volk_gnsssdr_free(d_local_code_shift_chips);
volk_gnsssdr_free(d_correlator_outs);
volk_gnsssdr_free(d_Prompt_Data);
multicorrelator_fpga->free();
}
catch (const std::exception &ex)
{
LOG(WARNING) << "Exception in destructor " << ex.what();
}
}
bool dll_pll_veml_tracking_fpga::acquire_secondary()
{
// ******* preamble correlation ********
int32_t corr_value = 0;
for (uint32_t i = 0; i < d_secondary_code_length; i++)
{
if (d_Prompt_circular_buffer[i].real() < 0.0) // symbols clipping
{
if (d_secondary_code_string->at(i) == '0')
{
corr_value++;
}
else
{
corr_value--;
}
}
else
{
if (d_secondary_code_string->at(i) == '0')
{
corr_value--;
}
else
{
corr_value++;
}
}
}
if (abs(corr_value) == static_cast<int32_t>(d_secondary_code_length))
{
return true;
}
return false;
}
bool dll_pll_veml_tracking_fpga::cn0_and_tracking_lock_status(double coh_integration_time_s)
{
// ####### CN0 ESTIMATION AND LOCK DETECTORS ######
if (d_cn0_estimation_counter < trk_parameters.cn0_samples)
{
// fill buffer with prompt correlator output values
d_Prompt_buffer[d_cn0_estimation_counter] = d_P_accu;
d_cn0_estimation_counter++;
return true;
}
d_Prompt_buffer[d_cn0_estimation_counter % trk_parameters.cn0_samples] = d_P_accu;
d_cn0_estimation_counter++;
// Code lock indicator
float d_CN0_SNV_dB_Hz_raw = cn0_m2m4_estimator(d_Prompt_buffer.data(), trk_parameters.cn0_samples, static_cast<float>(coh_integration_time_s));
d_CN0_SNV_dB_Hz = d_cn0_smoother.smooth(d_CN0_SNV_dB_Hz_raw);
// Carrier lock indicator
d_carrier_lock_test = d_carrier_lock_test_smoother.smooth(carrier_lock_detector(d_Prompt_buffer.data(), 1));
// Loss of lock detection
if (!d_pull_in_transitory)
{
if (d_carrier_lock_test < d_carrier_lock_threshold)
{
d_carrier_lock_fail_counter++;
}
else
{
if (d_carrier_lock_fail_counter > 0)
{
d_carrier_lock_fail_counter--;
}
}
if (d_CN0_SNV_dB_Hz < trk_parameters.cn0_min)
{
d_code_lock_fail_counter++;
}
else
{
if (d_code_lock_fail_counter > 0)
{
d_code_lock_fail_counter--;
}
}
}
if (d_carrier_lock_fail_counter > trk_parameters.max_carrier_lock_fail or d_code_lock_fail_counter > trk_parameters.max_code_lock_fail)
{
std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl;
LOG(INFO) << "Loss of lock in channel " << d_channel
<< " (carrier_lock_fail_counter:" << d_carrier_lock_fail_counter
<< " code_lock_fail_counter : " << d_code_lock_fail_counter << ")";
this->message_port_pub(pmt::mp("events"), pmt::from_long(3)); // 3 -> loss of lock
d_carrier_lock_fail_counter = 0;
d_code_lock_fail_counter = 0;
multicorrelator_fpga->unlock_channel();
return false;
}
return true;
}
// correlation requires:
// - updated remnant carrier phase in radians (rem_carr_phase_rad)
// - updated remnant code phase in samples (d_rem_code_phase_samples)
// - d_code_freq_chips
// - d_carrier_doppler_hz
void dll_pll_veml_tracking_fpga::do_correlation_step()
{
// ################# CARRIER WIPEOFF AND CORRELATORS ##############################
// perform carrier wipe-off and compute Early, Prompt and Late correlation
multicorrelator_fpga->Carrier_wipeoff_multicorrelator_resampler(
d_rem_carr_phase_rad,
d_carrier_phase_step_rad, d_carrier_phase_rate_step_rad,
static_cast<float>(d_rem_code_phase_chips) * static_cast<float>(d_code_samples_per_chip),
static_cast<float>(d_code_phase_step_chips) * static_cast<float>(d_code_samples_per_chip),
static_cast<float>(d_code_phase_rate_step_chips) * static_cast<float>(d_code_samples_per_chip),
d_current_integration_length_samples);
}
void dll_pll_veml_tracking_fpga::run_dll_pll()
{
// ################## PLL ##########################################################
// PLL discriminator
if (d_cloop)
{
// Costas loop discriminator, insensitive to 180 deg phase transitions
d_carr_phase_error_hz = pll_cloop_two_quadrant_atan(d_P_accu) / PI_2;
}
else
{
// Secondary code acquired. No symbols transition should be present in the signal
d_carr_phase_error_hz = pll_four_quadrant_atan(d_P_accu) / PI_2;
}
if ((d_pull_in_transitory == true and trk_parameters.enable_fll_pull_in == true) or trk_parameters.enable_fll_steady_state)
{
// FLL discriminator
// d_carr_freq_error_hz = fll_four_quadrant_atan(d_P_accu_old, d_P_accu, 0, d_current_correlation_time_s) / GPS_TWO_PI;
d_carr_freq_error_hz = fll_diff_atan(d_P_accu_old, d_P_accu, 0, d_current_correlation_time_s) / GPS_TWO_PI;
d_P_accu_old = d_P_accu;
// std::cout << "d_carr_freq_error_hz: " << d_carr_freq_error_hz << std::endl;
// Carrier discriminator filter
if ((d_pull_in_transitory == true and trk_parameters.enable_fll_pull_in == true))
{
// pure FLL, disable PLL
d_carr_error_filt_hz = d_carrier_loop_filter.get_carrier_error(d_carr_freq_error_hz, 0, d_current_correlation_time_s);
}
else
{
// FLL-aided PLL
d_carr_error_filt_hz = d_carrier_loop_filter.get_carrier_error(d_carr_freq_error_hz, d_carr_phase_error_hz, d_current_correlation_time_s);
}
}
else
{
// Carrier discriminator filter
d_carr_error_filt_hz = d_carrier_loop_filter.get_carrier_error(0, d_carr_phase_error_hz, d_current_correlation_time_s);
}
// New carrier Doppler frequency estimation
d_carrier_doppler_hz = d_carr_error_filt_hz;
// std::cout << "d_carrier_doppler_hz: " << d_carrier_doppler_hz << std::endl;
// std::cout << "d_CN0_SNV_dB_Hz: " << this->d_CN0_SNV_dB_Hz << std::endl;
// ################## DLL ##########################################################
// DLL discriminator
if (d_veml)
{
d_code_error_chips = dll_nc_vemlp_normalized(d_VE_accu, d_E_accu, d_L_accu, d_VL_accu); // [chips/Ti]
}
else
{
d_code_error_chips = dll_nc_e_minus_l_normalized(d_E_accu, d_L_accu); // [chips/Ti]
}
// Code discriminator filter
d_code_error_filt_chips = d_code_loop_filter.apply(d_code_error_chips); // [chips/second]
// New code Doppler frequency estimation
d_code_freq_chips = (1.0 + (d_carrier_doppler_hz / d_signal_carrier_freq)) * d_code_chip_rate - d_code_error_filt_chips;
// Experimental: detect Carrier Doppler vs. Code Doppler incoherence and correct the Carrier Doppler
if (trk_parameters.enable_doppler_correction == true)
{
if (d_pull_in_transitory == false and d_corrected_doppler == false)
{
d_dll_filt_history.push_back(static_cast<float>(d_code_error_filt_chips));
if (d_dll_filt_history.full())
{
float avg_code_error_chips_s = std::accumulate(d_dll_filt_history.begin(), d_dll_filt_history.end(), 0.0) / static_cast<float>(d_dll_filt_history.capacity());
if (fabs(avg_code_error_chips_s) > 1.0)
{
float carrier_doppler_error_hz = static_cast<float>(d_signal_carrier_freq) * avg_code_error_chips_s / static_cast<float>(d_code_chip_rate);
LOG(INFO) << "Detected and corrected carrier doppler error: " << carrier_doppler_error_hz << " [Hz] on sat " << Gnss_Satellite(systemName, d_acquisition_gnss_synchro->PRN);
d_carrier_loop_filter.initialize(d_carrier_doppler_hz - carrier_doppler_error_hz);
d_corrected_doppler = true;
}
d_dll_filt_history.clear();
}
}
}
}
void dll_pll_veml_tracking_fpga::clear_tracking_vars()
{
std::fill_n(d_correlator_outs, d_n_correlator_taps, gr_complex(0.0, 0.0));
if (trk_parameters.track_pilot)
{
d_Prompt_Data[0] = gr_complex(0.0, 0.0);
d_P_data_accu = gr_complex(0.0, 0.0);
}
d_P_accu_old = gr_complex(0.0, 0.0);
d_carr_phase_error_hz = 0.0;
d_carr_freq_error_hz = 0.0;
d_carr_error_filt_hz = 0.0;
d_code_error_chips = 0.0;
d_code_error_filt_chips = 0.0;
d_current_symbol = 0;
d_current_data_symbol = 0;
d_Prompt_circular_buffer.clear();
d_carrier_phase_rate_step_rad = 0.0;
d_code_phase_rate_step_chips = 0.0;
d_carr_ph_history.clear();
d_code_ph_history.clear();
}
void dll_pll_veml_tracking_fpga::update_tracking_vars()
{
T_chip_seconds = 1.0 / d_code_freq_chips;
T_prn_seconds = T_chip_seconds * static_cast<double>(d_code_length_chips);
// ################## CARRIER AND CODE NCO BUFFER ALIGNMENT #######################
// keep alignment parameters for the next input buffer
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
T_prn_samples = T_prn_seconds * trk_parameters.fs_in;
K_blk_samples = T_prn_samples * d_current_fpga_integration_period + d_rem_code_phase_samples; // initially d_rem_code_phase_samples is zero. It is updated at the end of this function
auto actual_blk_length = static_cast<int32_t>(std::floor(K_blk_samples));
d_next_integration_length_samples = actual_blk_length;
// ################## PLL COMMANDS #################################################
// carrier phase step (NCO phase increment per sample) [rads/sample]
d_carrier_phase_step_rad = PI_2 * d_carrier_doppler_hz / trk_parameters.fs_in;
// carrier phase rate step (NCO phase increment rate per sample) [rads/sample^2]
if (trk_parameters.high_dyn)
{
d_carr_ph_history.push_back(std::pair<double, double>(d_carrier_phase_step_rad, static_cast<double>(d_current_integration_length_samples)));
if (d_carr_ph_history.full())
{
double tmp_cp1 = 0.0;
double tmp_cp2 = 0.0;
double tmp_samples = 0.0;
for (unsigned int k = 0; k < trk_parameters.smoother_length; k++)
{
tmp_cp1 += d_carr_ph_history[k].first;
tmp_cp2 += d_carr_ph_history[trk_parameters.smoother_length * 2 - k - 1].first;
tmp_samples += d_carr_ph_history[trk_parameters.smoother_length * 2 - k - 1].second;
}
tmp_cp1 /= static_cast<double>(trk_parameters.smoother_length);
tmp_cp2 /= static_cast<double>(trk_parameters.smoother_length);
d_carrier_phase_rate_step_rad = (tmp_cp2 - tmp_cp1) / tmp_samples;
}
}
// std::cout << d_carrier_phase_rate_step_rad * trk_parameters.fs_in * trk_parameters.fs_in / PI_2 << std::endl;
// remnant carrier phase to prevent overflow in the code NCO
d_rem_carr_phase_rad += static_cast<float>(d_carrier_phase_step_rad * static_cast<double>(d_current_integration_length_samples) + 0.5 * d_carrier_phase_rate_step_rad * static_cast<double>(d_current_integration_length_samples) * static_cast<double>(d_current_integration_length_samples));
d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, PI_2);
// carrier phase accumulator
// double a = d_carrier_phase_step_rad * static_cast<double>(d_current_prn_length_samples);
// double b = 0.5 * d_carrier_phase_rate_step_rad * static_cast<double>(d_current_prn_length_samples) * static_cast<double>(d_current_prn_length_samples);
// std::cout << fmod(b, PI_2) / fmod(a, PI_2) << std::endl;
d_acc_carrier_phase_rad -= (d_carrier_phase_step_rad * static_cast<double>(d_current_integration_length_samples) + 0.5 * d_carrier_phase_rate_step_rad * static_cast<double>(d_current_integration_length_samples) * static_cast<double>(d_current_integration_length_samples));
// ################## DLL COMMANDS #################################################
// code phase step (Code resampler phase increment per sample) [chips/sample]
d_code_phase_step_chips = d_code_freq_chips / trk_parameters.fs_in;
if (trk_parameters.high_dyn)
{
d_code_ph_history.push_back(std::pair<double, double>(d_code_phase_step_chips, static_cast<double>(d_current_integration_length_samples)));
if (d_code_ph_history.full())
{
double tmp_cp1 = 0.0;
double tmp_cp2 = 0.0;
double tmp_samples = 0.0;
for (unsigned int k = 0; k < trk_parameters.smoother_length; k++)
{
tmp_cp1 += d_code_ph_history[k].first;
tmp_cp2 += d_code_ph_history[trk_parameters.smoother_length * 2 - k - 1].first;
tmp_samples += d_code_ph_history[trk_parameters.smoother_length * 2 - k - 1].second;
}
tmp_cp1 /= static_cast<double>(trk_parameters.smoother_length);
tmp_cp2 /= static_cast<double>(trk_parameters.smoother_length);
d_code_phase_rate_step_chips = (tmp_cp2 - tmp_cp1) / tmp_samples;
}
}
// remnant code phase [chips]
d_rem_code_phase_samples_prev = d_rem_code_phase_samples;
d_rem_code_phase_samples = K_blk_samples - static_cast<double>(d_current_integration_length_samples); // rounding error < 1 sample
d_rem_code_phase_chips = d_code_freq_chips * d_rem_code_phase_samples / trk_parameters.fs_in;
}
void dll_pll_veml_tracking_fpga::save_correlation_results()
{
if (d_secondary && (!d_current_extended_correlation_in_fpga)) // the FPGA removes the secondary code
{
if (d_secondary_code_string->at(d_current_symbol) == '0')
{
if (d_veml)
{
d_VE_accu += *d_Very_Early;
d_VL_accu += *d_Very_Late;
}
d_E_accu += *d_Early;
d_P_accu += *d_Prompt;
d_L_accu += *d_Late;
}
else
{
if (d_veml)
{
d_VE_accu -= *d_Very_Early;
d_VL_accu -= *d_Very_Late;
}
d_E_accu -= *d_Early;
d_P_accu -= *d_Prompt;
d_L_accu -= *d_Late;
}
d_current_symbol++;
// secondary code roll-up
d_current_symbol %= d_secondary_code_length;
}
else
{
if (d_veml)
{
d_VE_accu += *d_Very_Early;
d_VL_accu += *d_Very_Late;
}
d_E_accu += *d_Early;
d_P_accu += *d_Prompt;
d_L_accu += *d_Late;
}
// data secondary code roll-up
if (d_symbols_per_bit > 1)
{
if (d_data_secondary_code_length > 0)
{
if (trk_parameters.track_pilot)
{
if (!d_current_extended_correlation_in_fpga) // the FPGA removes the secondary code
{
if (d_data_secondary_code_string->at(d_current_data_symbol) == '0')
{
d_P_data_accu += *d_Prompt_Data;
}
else
{
d_P_data_accu -= *d_Prompt_Data;
}
}
else
{
d_P_data_accu += *d_Prompt_Data;
}
}
else
{
if (!d_current_extended_correlation_in_fpga)
{
if (d_data_secondary_code_string->at(d_current_data_symbol) == '0')
{
d_P_data_accu += *d_Prompt;
}
else
{
d_P_data_accu -= *d_Prompt;
}
}
else
{
d_P_data_accu += *d_Prompt;
}
}
d_current_data_symbol += d_current_fpga_integration_period;
d_current_data_symbol %= d_data_secondary_code_length;
}
else
{
if (trk_parameters.track_pilot)
{
d_P_data_accu += *d_Prompt_Data;
}
else
{
d_P_data_accu += *d_Prompt;
// std::cout << "s[" << d_current_data_symbol << "]=" << (int)((*d_Prompt).real() > 0) << std::endl;
}
d_current_data_symbol += d_current_fpga_integration_period;
d_current_data_symbol %= d_symbols_per_bit;
}
}
else
{
if (trk_parameters.track_pilot)
{
d_P_data_accu = *d_Prompt_Data;
}
else
{
d_P_data_accu = *d_Prompt;
}
}
if (trk_parameters.track_pilot)
{
// If tracking pilot, disable Costas loop
d_cloop = false;
}
else
{
d_cloop = true;
}
}
void dll_pll_veml_tracking_fpga::log_data()
{
if (d_dump)
{
// Dump results to file
float prompt_I;
float prompt_Q;
float tmp_VE;
float tmp_E;
float tmp_P;
float tmp_L;
float tmp_VL;
float tmp_float;
double tmp_double;
uint64_t tmp_long_int;
if (trk_parameters.track_pilot)
{
prompt_I = d_Prompt_Data->real();
prompt_Q = d_Prompt_Data->imag();
}
else
{
prompt_I = d_Prompt->real();
prompt_Q = d_Prompt->imag();
}
if (d_veml)
{
tmp_VE = std::abs<float>(d_VE_accu);
tmp_VL = std::abs<float>(d_VL_accu);
}
else
{
tmp_VE = 0.0;
tmp_VL = 0.0;
}
tmp_E = std::abs<float>(d_E_accu);
tmp_P = std::abs<float>(d_P_accu);
tmp_L = std::abs<float>(d_L_accu);
try
{
// Dump correlators output
d_dump_file.write(reinterpret_cast<char *>(&tmp_VE), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&tmp_E), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&tmp_P), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&tmp_L), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&tmp_VL), sizeof(float));
// PROMPT I and Q (to analyze navigation symbols)
d_dump_file.write(reinterpret_cast<char *>(&prompt_I), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&prompt_Q), sizeof(float));
// PRN start sample stamp
tmp_long_int = d_sample_counter_next;
d_dump_file.write(reinterpret_cast<char *>(&tmp_long_int), sizeof(uint64_t));
// accumulated carrier phase
tmp_float = d_acc_carrier_phase_rad;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
// carrier and code frequency
tmp_float = d_carrier_doppler_hz;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
// carrier phase rate [Hz/s]
tmp_float = d_carrier_phase_rate_step_rad * trk_parameters.fs_in * trk_parameters.fs_in / PI_2;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
tmp_float = d_code_freq_chips;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
// code phase rate [chips/s^2]
tmp_float = d_code_phase_rate_step_chips * trk_parameters.fs_in * trk_parameters.fs_in;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
// PLL commands
tmp_float = d_carr_phase_error_hz;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
tmp_float = d_carr_error_filt_hz;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
// DLL commands
tmp_float = d_code_error_chips;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
tmp_float = d_code_error_filt_chips;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
// CN0 and carrier lock test
tmp_float = d_CN0_SNV_dB_Hz;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
tmp_float = d_carrier_lock_test;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
// AUX vars (for debug purposes)
tmp_float = d_rem_code_phase_samples;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
tmp_double = static_cast<double>(d_sample_counter_next);
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
// PRN
uint32_t prn_ = d_acquisition_gnss_synchro->PRN;
d_dump_file.write(reinterpret_cast<char *>(&prn_), sizeof(uint32_t));
}
catch (const std::ifstream::failure &e)
{
LOG(WARNING) << "Exception writing trk dump file " << e.what();
}
}
}
int32_t dll_pll_veml_tracking_fpga::save_matfile()
{
// READ DUMP FILE
std::ifstream::pos_type size;
int32_t number_of_double_vars = 1;
int32_t number_of_float_vars = 19;
int32_t epoch_size_bytes = sizeof(uint64_t) + sizeof(double) * number_of_double_vars +
sizeof(float) * number_of_float_vars + sizeof(uint32_t);
std::ifstream dump_file;
std::string dump_filename_ = d_dump_filename;
// add channel number to the filename
dump_filename_.append(std::to_string(d_channel));
// add extension
dump_filename_.append(".dat");
std::cout << "Generating .mat file for " << dump_filename_ << std::endl;
dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
try
{
dump_file.open(dump_filename_.c_str(), std::ios::binary | std::ios::ate);
}
catch (const std::ifstream::failure &e)
{
std::cerr << "Problem opening dump file:" << e.what() << std::endl;
return 1;
}
// count number of epochs and rewind
int64_t num_epoch = 0;
if (dump_file.is_open())
{
size = dump_file.tellg();
num_epoch = static_cast<int64_t>(size) / static_cast<int64_t>(epoch_size_bytes);
dump_file.seekg(0, std::ios::beg);
}
else
{
return 1;
}
auto abs_VE = std::vector<float>(num_epoch);
auto abs_E = std::vector<float>(num_epoch);
auto abs_P = std::vector<float>(num_epoch);
auto abs_L = std::vector<float>(num_epoch);
auto abs_VL = std::vector<float>(num_epoch);
auto Prompt_I = std::vector<float>(num_epoch);
auto Prompt_Q = std::vector<float>(num_epoch);
auto PRN_start_sample_count = std::vector<uint64_t>(num_epoch);
auto acc_carrier_phase_rad = std::vector<float>(num_epoch);
auto carrier_doppler_hz = std::vector<float>(num_epoch);
auto carrier_doppler_rate_hz = std::vector<float>(num_epoch);
auto code_freq_chips = std::vector<float>(num_epoch);
auto code_freq_rate_chips = std::vector<float>(num_epoch);
auto carr_error_hz = std::vector<float>(num_epoch);
auto carr_error_filt_hz = std::vector<float>(num_epoch);
auto code_error_chips = std::vector<float>(num_epoch);
auto code_error_filt_chips = std::vector<float>(num_epoch);
auto CN0_SNV_dB_Hz = std::vector<float>(num_epoch);
auto carrier_lock_test = std::vector<float>(num_epoch);
auto aux1 = std::vector<float>(num_epoch);
auto aux2 = std::vector<double>(num_epoch);
auto PRN = std::vector<uint32_t>(num_epoch);
try
{
if (dump_file.is_open())
{
for (int64_t i = 0; i < num_epoch; i++)
{
dump_file.read(reinterpret_cast<char *>(&abs_VE[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&abs_E[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&abs_P[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&abs_L[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&abs_VL[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&Prompt_I[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&Prompt_Q[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&PRN_start_sample_count[i]), sizeof(uint64_t));
dump_file.read(reinterpret_cast<char *>(&acc_carrier_phase_rad[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&carrier_doppler_hz[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&carrier_doppler_rate_hz[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&code_freq_chips[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&code_freq_rate_chips[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&carr_error_hz[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&carr_error_filt_hz[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&code_error_chips[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&code_error_filt_chips[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&CN0_SNV_dB_Hz[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&carrier_lock_test[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&aux1[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&aux2[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&PRN[i]), sizeof(uint32_t));
}
}
dump_file.close();
}
catch (const std::ifstream::failure &e)
{
std::cerr << "Problem reading dump file:" << e.what() << std::endl;
return 1;
}
// WRITE MAT FILE
mat_t *matfp;
matvar_t *matvar;
std::string filename = dump_filename_;
filename.erase(filename.length() - 4, 4);
filename.append(".mat");
matfp = Mat_CreateVer(filename.c_str(), nullptr, MAT_FT_MAT73);
if (reinterpret_cast<int64_t *>(matfp) != nullptr)
{
std::array<size_t, 2> dims{1, static_cast<size_t>(num_epoch)};
matvar = Mat_VarCreate("abs_VE", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), abs_VE.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("abs_E", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), abs_E.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("abs_P", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), abs_P.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("abs_L", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), abs_L.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("abs_VL", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), abs_VL.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("Prompt_I", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), Prompt_I.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("Prompt_Q", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), Prompt_Q.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("PRN_start_sample_count", MAT_C_UINT64, MAT_T_UINT64, 2, dims.data(), PRN_start_sample_count.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("acc_carrier_phase_rad", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), acc_carrier_phase_rad.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("carrier_doppler_hz", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), carrier_doppler_hz.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("carrier_doppler_rate_hz", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), carrier_doppler_rate_hz.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("code_freq_chips", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), code_freq_chips.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("code_freq_rate_chips", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), code_freq_rate_chips.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("carr_error_hz", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), carr_error_hz.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("carr_error_filt_hz", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), carr_error_filt_hz.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("code_error_chips", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), code_error_chips.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("code_error_filt_chips", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), code_error_filt_chips.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("CN0_SNV_dB_Hz", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), CN0_SNV_dB_Hz.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("carrier_lock_test", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), carrier_lock_test.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("aux1", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), aux1.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("aux2", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims.data(), aux2.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("PRN", MAT_C_UINT32, MAT_T_UINT32, 2, dims.data(), PRN.data(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
}
Mat_Close(matfp);
return 0;
}
void dll_pll_veml_tracking_fpga::set_channel(uint32_t channel)
{
gr::thread::scoped_lock l(d_setlock);
d_channel = channel;
multicorrelator_fpga->set_channel(d_channel);
LOG(INFO) << "Tracking Channel set to " << d_channel;
// ############# ENABLE DATA FILE LOG #################
if (d_dump)
{
std::string dump_filename_ = d_dump_filename;
// add channel number to the filename
dump_filename_.append(std::to_string(d_channel));
// add extension
dump_filename_.append(".dat");
if (!d_dump_file.is_open())
{
try
{
d_dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
d_dump_file.open(dump_filename_.c_str(), std::ios::out | std::ios::binary);
LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << dump_filename_.c_str();
}
catch (const std::ifstream::failure &e)
{
LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e.what();
}
}
}
if (d_enable_extended_integration == true)
{
if (d_extended_correlation_in_fpga == true)
{
// Now we can write the secondary codes that do not depend on the PRN number
if (trk_parameters.system == 'G')
{
if (signal_type == "L5")
{
if (trk_parameters.track_pilot)
{
multicorrelator_fpga->set_secondary_code_lengths(d_secondary_code_length, d_data_secondary_code_length);
multicorrelator_fpga->initialize_secondary_code(0, d_secondary_code_string);
multicorrelator_fpga->initialize_secondary_code(1, d_data_secondary_code_string);
}
else
{
multicorrelator_fpga->set_secondary_code_lengths(d_secondary_code_length, 0);
multicorrelator_fpga->initialize_secondary_code(0, d_secondary_code_string);
}
}
}
else if (trk_parameters.system == 'E')
{
if (signal_type == "5X")
{
// coherent integration in the FPGA is only enabled when tracking the pilot.
if (trk_parameters.track_pilot)
{
multicorrelator_fpga->set_secondary_code_lengths(d_secondary_code_length, d_data_secondary_code_length);
multicorrelator_fpga->initialize_secondary_code(1, d_data_secondary_code_string);
}
}
}
}
}
}
void dll_pll_veml_tracking_fpga::set_gnss_synchro(Gnss_Synchro *p_gnss_synchro)
{
d_acquisition_gnss_synchro = p_gnss_synchro;
if (p_gnss_synchro->PRN > 0)
{
// A set_gnss_synchro command with a valid PRN is received when the system is going to run acquisition with that PRN.
// We can use this command to pre-initialize tracking parameters and variables before the actual acquisition process takes place.
// In this way we minimize the latency between acquisition and tracking once the acquisition has been made.
d_sample_counter = 0;
d_sample_counter_next = 0;
d_carrier_phase_rate_step_rad = 0.0;
d_code_ph_history.clear();
d_carr_ph_history.clear();
if (systemName == "GPS" and signal_type == "L5")
{
if (trk_parameters.track_pilot)
{
d_Prompt_Data[0] = gr_complex(0.0, 0.0);
}
}
else if (systemName == "Galileo" and signal_type == "1B")
{
if (trk_parameters.track_pilot)
{
d_Prompt_Data[0] = gr_complex(0.0, 0.0);
}
}
else if (systemName == "Galileo" and signal_type == "5X")
{
if (trk_parameters.track_pilot)
{
d_secondary_code_string = const_cast<std::string *>(&GALILEO_E5A_Q_SECONDARY_CODE[d_acquisition_gnss_synchro->PRN - 1]);
d_Prompt_Data[0] = gr_complex(0.0, 0.0);
if (d_enable_extended_integration == true)
{
if (d_extended_correlation_in_fpga == true)
{
multicorrelator_fpga->initialize_secondary_code(0, d_secondary_code_string);
}
}
}
}
std::fill_n(d_correlator_outs, d_n_correlator_taps, gr_complex(0.0, 0.0));
d_carrier_lock_fail_counter = 0;
d_code_lock_fail_counter = 0;
d_rem_code_phase_samples = 0.0;
d_rem_carr_phase_rad = 0.0;
d_rem_code_phase_chips = 0.0;
d_acc_carrier_phase_rad = 0.0;
d_cn0_estimation_counter = 0;
d_carrier_lock_test = 1.0;
d_CN0_SNV_dB_Hz = 0.0;
d_code_phase_rate_step_chips = 0.0;
if (d_veml)
{
d_local_code_shift_chips[0] = -trk_parameters.very_early_late_space_chips * static_cast<float>(d_code_samples_per_chip);
d_local_code_shift_chips[1] = -trk_parameters.early_late_space_chips * static_cast<float>(d_code_samples_per_chip);
d_local_code_shift_chips[3] = trk_parameters.early_late_space_chips * static_cast<float>(d_code_samples_per_chip);
d_local_code_shift_chips[4] = trk_parameters.very_early_late_space_chips * static_cast<float>(d_code_samples_per_chip);
}
else
{
d_local_code_shift_chips[0] = -trk_parameters.early_late_space_chips * static_cast<float>(d_code_samples_per_chip);
d_local_code_shift_chips[2] = trk_parameters.early_late_space_chips * static_cast<float>(d_code_samples_per_chip);
}
d_current_correlation_time_s = d_code_period;
// DLL/PLL filter initialization
d_carrier_loop_filter.set_params(trk_parameters.fll_bw_hz, trk_parameters.pll_bw_hz, trk_parameters.pll_filter_order);
d_code_loop_filter.set_noise_bandwidth(trk_parameters.dll_bw_hz);
d_code_loop_filter.set_update_interval(d_code_period);
d_code_loop_filter.initialize(); // initialize the code filter
multicorrelator_fpga->set_local_code_and_taps(d_local_code_shift_chips, d_prompt_data_shift, d_acquisition_gnss_synchro->PRN);
d_pull_in_transitory = true;
d_cloop = true;
d_Prompt_circular_buffer.clear();
T_chip_seconds = 1.0 / d_code_freq_chips;
T_prn_seconds = T_chip_seconds * static_cast<double>(d_code_length_chips);
// re-establish nominal integration length (not extended integration by default)
d_current_integration_length_samples = static_cast<int32_t>(trk_parameters.vector_length);
d_next_integration_length_samples = d_current_integration_length_samples;
multicorrelator_fpga->disable_secondary_codes(); // make sure the processing of the secondary codes is disabled by default
d_current_fpga_integration_period = 1;
d_current_extended_correlation_in_fpga = false;
d_cn0_smoother.reset();
d_carrier_lock_test_smoother.reset();
}
}
void dll_pll_veml_tracking_fpga::stop_tracking()
{
// interrupt the tracking loops
d_stop_tracking = true;
}
void dll_pll_veml_tracking_fpga::reset()
{
gr::thread::scoped_lock l(d_setlock);
multicorrelator_fpga->unlock_channel();
}
int dll_pll_veml_tracking_fpga::general_work(int noutput_items __attribute__((unused)),
gr_vector_int &ninput_items __attribute__((unused)),
gr_vector_const_void_star &input_items __attribute__((unused)),
gr_vector_void_star &output_items)
{
gr::thread::scoped_lock l(d_setlock);
auto **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]);
Gnss_Synchro current_synchro_data = Gnss_Synchro();
current_synchro_data.Flag_valid_symbol_output = false;
while ((!current_synchro_data.Flag_valid_symbol_output) && (!d_stop_tracking))
{
d_current_integration_length_samples = d_next_integration_length_samples;
if (d_pull_in_transitory == true)
{
if (d_sample_counter > 0) // do not execute this condition until the sample counter has ben read for the first time after start_tracking
{
if (trk_parameters.pull_in_time_s < (d_sample_counter - d_acq_sample_stamp) / static_cast<int>(trk_parameters.fs_in))
{
d_pull_in_transitory = false;
d_carrier_lock_fail_counter = 0;
d_code_lock_fail_counter = 0;
}
}
}
switch (d_state)
{
case 1: // Pull-in
{
d_worker_is_done = false;
boost::mutex::scoped_lock lock(d_mutex);
while (!d_worker_is_done)
{
m_condition.wait(lock);
}
// Signal alignment (skip samples until the incoming signal is aligned with local replica)
int64_t acq_trk_diff_samples;
double acq_trk_diff_seconds;
double delta_trk_to_acq_prn_start_samples;
uint64_t absolute_samples_offset;
multicorrelator_fpga->lock_channel();
uint64_t counter_value = multicorrelator_fpga->read_sample_counter();
if (counter_value > (d_acq_sample_stamp + d_acq_code_phase_samples))
{
// Signal alignment (skip samples until the incoming signal is aligned with local replica)
acq_trk_diff_samples = static_cast<int64_t>(counter_value) - static_cast<int64_t>(d_acq_sample_stamp);
acq_trk_diff_seconds = static_cast<double>(acq_trk_diff_samples) / trk_parameters.fs_in;
delta_trk_to_acq_prn_start_samples = static_cast<double>(acq_trk_diff_samples) - d_acq_code_phase_samples;
uint32_t num_frames = ceil((delta_trk_to_acq_prn_start_samples) / d_current_integration_length_samples);
absolute_samples_offset = static_cast<uint64_t>(d_acq_code_phase_samples + d_acq_sample_stamp + num_frames * d_current_integration_length_samples);
}
else
{
// test mode
acq_trk_diff_samples = -static_cast<int64_t>(counter_value) + static_cast<int64_t>(d_acq_sample_stamp);
acq_trk_diff_seconds = static_cast<double>(acq_trk_diff_samples) / trk_parameters.fs_in;
delta_trk_to_acq_prn_start_samples = static_cast<double>(acq_trk_diff_samples) + d_acq_code_phase_samples;
absolute_samples_offset = static_cast<uint64_t>(delta_trk_to_acq_prn_start_samples);
}
multicorrelator_fpga->set_initial_sample(absolute_samples_offset);
d_sample_counter = absolute_samples_offset;
d_sample_counter_next = d_sample_counter;
// Doppler effect Fd = (C / (C + Vr)) * F
double radial_velocity = (d_signal_carrier_freq + d_acq_carrier_doppler_hz) / d_signal_carrier_freq;
// new chip and PRN sequence periods based on acq Doppler
d_code_freq_chips = radial_velocity * d_code_chip_rate;
d_code_phase_step_chips = d_code_freq_chips / trk_parameters.fs_in;
d_acq_code_phase_samples = absolute_samples_offset;
int32_t samples_offset = round(d_acq_code_phase_samples);
d_acc_carrier_phase_rad -= d_carrier_phase_step_rad * static_cast<double>(samples_offset);
d_state = 2;
LOG(INFO) << "Number of samples between Acquisition and Tracking = " << acq_trk_diff_samples << " ( " << acq_trk_diff_seconds << " s)";
DLOG(INFO) << "PULL-IN Doppler [Hz] = " << d_carrier_doppler_hz
<< ". PULL-IN Code Phase [samples] = " << d_acq_code_phase_samples;
// DEBUG OUTPUT
std::cout << "Tracking of " << systemName << " " << signal_pretty_name << " signal started on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName, d_acquisition_gnss_synchro->PRN) << std::endl;
DLOG(INFO) << "Starting tracking of satellite " << Gnss_Satellite(systemName, d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel;
// DLOG(INFO) << "Number of samples between Acquisition and Tracking = " << acq_trk_diff_samples << " ( " << acq_trk_diff_seconds << " s)";
// std::cout << "Number of samples between Acquisition and Tracking = " << acq_trk_diff_samples << " ( " << acq_trk_diff_seconds << " s)" << std::endl;
// DLOG(INFO) << "PULL-IN Doppler [Hz] = " << d_carrier_doppler_hz
// << ". PULL-IN Code Phase [samples] = " << d_acq_code_phase_samples;
break;
}
case 2: // Wide tracking and symbol synchronization
{
d_sample_counter = d_sample_counter_next;
d_sample_counter_next = d_sample_counter + static_cast<uint64_t>(d_current_integration_length_samples);
do_correlation_step();
// Save single correlation step variables
if (d_veml)
{
d_VE_accu = *d_Very_Early;
d_VL_accu = *d_Very_Late;
}
d_E_accu = *d_Early;
d_P_accu = *d_Prompt;
d_L_accu = *d_Late;
// fail-safe: check if the secondary code or bit synchronization has not succeeded in a limited time period
if (trk_parameters.bit_synchronization_time_limit_s < (d_sample_counter - d_acq_sample_stamp) / static_cast<int>(trk_parameters.fs_in))
{
d_carrier_lock_fail_counter = 300000; // force loss-of-lock condition
LOG(INFO) << systemName << " " << signal_pretty_name << " tracking synchronization time limit reached in channel " << d_channel
<< " for satellite " << Gnss_Satellite(systemName, d_acquisition_gnss_synchro->PRN) << std::endl;
}
// Check lock status
if (!cn0_and_tracking_lock_status(d_code_period))
{
clear_tracking_vars();
d_state = 1; // loss-of-lock detected
// send something to let the scheduler know that it has to keep on calling general work and to finish the loop
// current_synchro_data.Flag_valid_symbol_output=1;
}
else
{
bool next_state = false;
// Perform DLL/PLL tracking loop computations. Costas Loop enabled
run_dll_pll();
update_tracking_vars();
// enable write dump file this cycle (valid DLL/PLL cycle)
log_data();
if (!d_pull_in_transitory)
{
if (d_secondary)
{
// ####### SECONDARY CODE LOCK #####
d_Prompt_circular_buffer.push_back(*d_Prompt);
if (d_Prompt_circular_buffer.size() == d_secondary_code_length)
{
next_state = acquire_secondary();
if (next_state)
{
LOG(INFO) << systemName << " " << signal_pretty_name << " secondary code locked in channel " << d_channel
<< " for satellite " << Gnss_Satellite(systemName, d_acquisition_gnss_synchro->PRN) << std::endl;
std::cout << systemName << " " << signal_pretty_name << " secondary code locked in channel " << d_channel
<< " for satellite " << Gnss_Satellite(systemName, d_acquisition_gnss_synchro->PRN) << std::endl;
}
}
}
else if (d_symbols_per_bit > 1) // Signal does not have secondary code. Search a bit transition by sign change
{
// ******* preamble correlation ********
d_Prompt_circular_buffer.push_back(*d_Prompt);
if (d_Prompt_circular_buffer.size() == d_secondary_code_length)
{
next_state = acquire_secondary();
if (next_state)
{
LOG(INFO) << systemName << " " << signal_pretty_name << " tracking bit synchronization locked in channel " << d_channel
<< " for satellite " << Gnss_Satellite(systemName, d_acquisition_gnss_synchro->PRN) << std::endl;
std::cout << systemName << " " << signal_pretty_name << " tracking bit synchronization locked in channel " << d_channel
<< " for satellite " << Gnss_Satellite(systemName, d_acquisition_gnss_synchro->PRN) << std::endl;
}
}
}
else
{
next_state = true;
}
}
else
{
next_state = false; // keep in state 2 during pull-in transitory
}
if (next_state)
{ // reset extended correlator
d_VE_accu = gr_complex(0.0, 0.0);
d_E_accu = gr_complex(0.0, 0.0);
d_P_accu = gr_complex(0.0, 0.0);
d_P_data_accu = gr_complex(0.0, 0.0);
d_L_accu = gr_complex(0.0, 0.0);
d_VL_accu = gr_complex(0.0, 0.0);
d_Prompt_circular_buffer.clear();
d_current_symbol = 0;
d_current_data_symbol = 0;
if (d_enable_extended_integration)
{
// update integration time
d_extend_correlation_symbols_count = 0;
d_current_correlation_time_s = static_cast<float>(trk_parameters.extend_correlation_symbols) * static_cast<float>(d_code_period);
if (d_extended_correlation_in_fpga)
{
d_current_fpga_integration_period = d_fpga_integration_period;
d_current_extended_correlation_in_fpga = true;
if (d_sc_demodulate_enabled)
{
multicorrelator_fpga->enable_secondary_codes();
}
if (d_extend_fpga_integration_periods > 1)
{
// correction on already computed parameters
K_blk_samples = T_prn_samples * (d_fpga_integration_period) + d_rem_code_phase_samples_prev;
d_next_integration_length_samples = static_cast<int32_t>(std::floor(K_blk_samples));
d_state = 5;
}
else
{
// correction on already computed parameters
K_blk_samples = T_prn_samples * trk_parameters.extend_correlation_symbols + d_rem_code_phase_samples_prev;
d_next_integration_length_samples = static_cast<int32_t>(std::floor(K_blk_samples));
d_state = 6;
}
}
else
{
d_state = 3; // next state is the extended correlator integrator
}
LOG(INFO) << "Enabled " << trk_parameters.extend_correlation_symbols * static_cast<int32_t>(d_code_period * 1000.0) << " ms extended correlator in channel "
<< d_channel
<< " for satellite " << Gnss_Satellite(systemName, d_acquisition_gnss_synchro->PRN);
std::cout << "Enabled " << trk_parameters.extend_correlation_symbols * static_cast<int32_t>(d_code_period * 1000.0) << " ms extended correlator in channel "
<< d_channel
<< " for satellite " << Gnss_Satellite(systemName, d_acquisition_gnss_synchro->PRN) << std::endl;
// Set narrow taps delay values [chips]
d_code_loop_filter.set_update_interval(d_current_correlation_time_s);
d_code_loop_filter.set_noise_bandwidth(trk_parameters.dll_bw_narrow_hz);
d_carrier_loop_filter.set_params(trk_parameters.fll_bw_hz, trk_parameters.pll_bw_narrow_hz, trk_parameters.pll_filter_order);
if (d_veml)
{
d_local_code_shift_chips[0] = -trk_parameters.very_early_late_space_narrow_chips * static_cast<float>(d_code_samples_per_chip);
d_local_code_shift_chips[1] = -trk_parameters.early_late_space_narrow_chips * static_cast<float>(d_code_samples_per_chip);
d_local_code_shift_chips[3] = trk_parameters.early_late_space_narrow_chips * static_cast<float>(d_code_samples_per_chip);
d_local_code_shift_chips[4] = trk_parameters.very_early_late_space_narrow_chips * static_cast<float>(d_code_samples_per_chip);
}
else
{
d_local_code_shift_chips[0] = -trk_parameters.early_late_space_narrow_chips * static_cast<float>(d_code_samples_per_chip);
d_local_code_shift_chips[2] = trk_parameters.early_late_space_narrow_chips * static_cast<float>(d_code_samples_per_chip);
}
}
else
{
d_state = 4;
}
}
}
break;
}
case 3: // coherent integration (correlation time extension)
{
d_sample_counter = d_sample_counter_next;
d_sample_counter_next = d_sample_counter + static_cast<uint64_t>(d_current_integration_length_samples);
// perform a correlation step
do_correlation_step();
save_correlation_results();
update_tracking_vars();
if (d_current_data_symbol == 0)
{
log_data();
// ########### Output the tracking results to Telemetry block ##########
// Fill the acquisition data
current_synchro_data = *d_acquisition_gnss_synchro;
if (interchange_iq)
{
current_synchro_data.Prompt_I = static_cast<double>(d_P_data_accu.imag());
current_synchro_data.Prompt_Q = static_cast<double>(d_P_data_accu.real());
}
else
{
current_synchro_data.Prompt_I = static_cast<double>(d_P_data_accu.real());
current_synchro_data.Prompt_Q = static_cast<double>(d_P_data_accu.imag());
}
current_synchro_data.Code_phase_samples = d_rem_code_phase_samples;
current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad;
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
current_synchro_data.correlation_length_ms = d_correlation_length_ms;
current_synchro_data.Flag_valid_symbol_output = true;
d_P_data_accu = gr_complex(0.0, 0.0);
}
d_extend_correlation_symbols_count++;
if (d_extend_correlation_symbols_count == (trk_parameters.extend_correlation_symbols - 1))
{
d_extend_correlation_symbols_count = 0;
d_state = 4;
}
break;
}
case 4: // narrow tracking
{
d_sample_counter = d_sample_counter_next;
d_sample_counter_next = d_sample_counter + static_cast<uint64_t>(d_current_integration_length_samples);
// perform a correlation step
do_correlation_step();
save_correlation_results();
// check lock status
if (!cn0_and_tracking_lock_status(d_code_period * static_cast<double>(trk_parameters.extend_correlation_symbols)))
{
clear_tracking_vars();
d_state = 1; // loss-of-lock detected
// send something to let the scheduler know that it has to keep on calling general work and to finish the loop
// current_synchro_data.Flag_valid_symbol_output=1;
}
else
{
run_dll_pll();
update_tracking_vars();
if (d_current_data_symbol == 0)
{
// enable write dump file this cycle (valid DLL/PLL cycle)
log_data();
// ########### Output the tracking results to Telemetry block ##########
// Fill the acquisition data
current_synchro_data = *d_acquisition_gnss_synchro;
if (interchange_iq)
{
current_synchro_data.Prompt_I = static_cast<double>(d_P_data_accu.imag());
current_synchro_data.Prompt_Q = static_cast<double>(d_P_data_accu.real());
}
else
{
current_synchro_data.Prompt_I = static_cast<double>(d_P_data_accu.real());
current_synchro_data.Prompt_Q = static_cast<double>(d_P_data_accu.imag());
}
current_synchro_data.Code_phase_samples = d_rem_code_phase_samples;
current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad;
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
current_synchro_data.correlation_length_ms = d_correlation_length_ms;
current_synchro_data.Flag_valid_symbol_output = true;
d_P_data_accu = gr_complex(0.0, 0.0);
}
// reset extended correlator
d_VE_accu = gr_complex(0.0, 0.0);
d_E_accu = gr_complex(0.0, 0.0);
d_P_accu = gr_complex(0.0, 0.0);
d_L_accu = gr_complex(0.0, 0.0);
d_VL_accu = gr_complex(0.0, 0.0);
if (d_enable_extended_integration)
{
d_state = 3; // new coherent integration (correlation time extension) cycle
}
}
break;
}
case 5: // coherent integration (correlation time extension)
{
d_sample_counter = d_sample_counter_next;
d_sample_counter_next = d_sample_counter + static_cast<uint64_t>(d_current_integration_length_samples);
// this must be computed for the secondary prn code
if (d_secondary)
{
uint32_t first_prn_length = d_current_integration_length_samples - (d_fpga_integration_period - 1) * static_cast<int32_t>(std::floor(T_prn_samples));
uint32_t next_prn_length = static_cast<int32_t>(std::floor(T_prn_samples));
multicorrelator_fpga->update_prn_code_length(first_prn_length, next_prn_length);
}
// perform a correlation step
do_correlation_step();
save_correlation_results();
update_tracking_vars();
if (d_current_data_symbol == 0)
{
log_data();
// ########### Output the tracking results to Telemetry block ##########
// Fill the acquisition data
current_synchro_data = *d_acquisition_gnss_synchro;
if (interchange_iq)
{
current_synchro_data.Prompt_I = static_cast<double>(d_P_data_accu.imag());
current_synchro_data.Prompt_Q = static_cast<double>(d_P_data_accu.real());
}
else
{
current_synchro_data.Prompt_I = static_cast<double>(d_P_data_accu.real());
current_synchro_data.Prompt_Q = static_cast<double>(d_P_data_accu.imag());
}
current_synchro_data.Code_phase_samples = d_rem_code_phase_samples;
current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad;
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
current_synchro_data.correlation_length_ms = d_correlation_length_ms;
current_synchro_data.Flag_valid_symbol_output = true;
d_P_data_accu = gr_complex(0.0, 0.0);
}
d_extend_correlation_symbols_count++;
if (d_extend_correlation_symbols_count == (d_extend_fpga_integration_periods - 1))
{
d_extend_correlation_symbols_count = 0;
d_state = 6;
}
break;
}
case 6: // narrow tracking IN THE FPGA
{
d_sample_counter = d_sample_counter_next;
d_sample_counter_next = d_sample_counter + static_cast<uint64_t>(d_current_integration_length_samples);
// this must be computed for the secondary prn code
if (d_secondary)
{
uint32_t first_prn_length = d_current_integration_length_samples - (d_fpga_integration_period - 1) * static_cast<int32_t>(std::floor(T_prn_samples));
uint32_t next_prn_length = static_cast<int32_t>(std::floor(T_prn_samples));
multicorrelator_fpga->update_prn_code_length(first_prn_length, next_prn_length);
}
// perform a correlation step
do_correlation_step();
save_correlation_results();
// check lock status
if (!cn0_and_tracking_lock_status(d_code_period * static_cast<double>(trk_parameters.extend_correlation_symbols)))
{
clear_tracking_vars();
d_state = 1; // loss-of-lock detected
// send something to let the scheduler know that it has to keep on calling general work and to finish the loop
// current_synchro_data.Flag_valid_symbol_output=1;
}
else
{
run_dll_pll();
update_tracking_vars();
if (d_current_data_symbol == 0)
{
// enable write dump file this cycle (valid DLL/PLL cycle)
log_data();
// ########### Output the tracking results to Telemetry block ##########
// Fill the acquisition data
current_synchro_data = *d_acquisition_gnss_synchro;
if (interchange_iq)
{
current_synchro_data.Prompt_I = static_cast<double>(d_P_data_accu.imag());
current_synchro_data.Prompt_Q = static_cast<double>(d_P_data_accu.real());
}
else
{
current_synchro_data.Prompt_I = static_cast<double>(d_P_data_accu.real());
current_synchro_data.Prompt_Q = static_cast<double>(d_P_data_accu.imag());
}
current_synchro_data.Code_phase_samples = d_rem_code_phase_samples;
current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad;
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
current_synchro_data.correlation_length_ms = d_correlation_length_ms;
current_synchro_data.Flag_valid_symbol_output = true;
d_P_data_accu = gr_complex(0.0, 0.0);
}
d_extend_correlation_symbols_count = 0;
// reset extended correlator
d_VE_accu = gr_complex(0.0, 0.0);
d_E_accu = gr_complex(0.0, 0.0);
d_P_accu = gr_complex(0.0, 0.0);
d_L_accu = gr_complex(0.0, 0.0);
d_VL_accu = gr_complex(0.0, 0.0);
if (d_extend_fpga_integration_periods > 1)
{
d_state = 5;
}
}
break;
}
default:
break;
}
}
if (current_synchro_data.Flag_valid_symbol_output)
{
current_synchro_data.fs = static_cast<int64_t>(trk_parameters.fs_in);
current_synchro_data.Tracking_sample_counter = d_sample_counter_next; // d_sample_counter;
*out[0] = current_synchro_data;
return 1;
}
return 0;
}