1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-11-17 07:14:55 +00:00
gnss-sdr/src/algorithms/PVT/libs/hybrid_ls_pvt.cc
2017-08-19 09:16:10 +02:00

409 lines
23 KiB
C++

/*!
* \file galileo_e1_ls_pvt.cc
* \brief Implementation of a Least Squares Position, Velocity, and Time
* (PVT) solver, based on K.Borre's Matlab receiver.
* \author Javier Arribas, 2011. jarribas(at)cttc.es
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "hybrid_ls_pvt.h"
#include <glog/logging.h>
#include "Galileo_E1.h"
#include "GPS_L1_CA.h"
#include "GPS_L2C.h"
using google::LogMessage;
hybrid_ls_pvt::hybrid_ls_pvt(int nchannels, std::string dump_filename, bool flag_dump_to_file) : Ls_Pvt()
{
// init empty ephemeris for all the available GNSS channels
d_nchannels = nchannels;
d_dump_filename = dump_filename;
d_flag_dump_enabled = flag_dump_to_file;
d_galileo_current_time = 0;
count_valid_position = 0;
this->set_averaging_flag(false);
// ############# ENABLE DATA FILE LOG #################
if (d_flag_dump_enabled == true)
{
if (d_dump_file.is_open() == false)
{
try
{
d_dump_file.exceptions (std::ifstream::failbit | std::ifstream::badbit);
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
LOG(INFO) << "PVT lib dump enabled Log file: " << d_dump_filename.c_str();
}
catch (const std::ifstream::failure &e)
{
LOG(WARNING) << "Exception opening PVT lib dump file " << e.what();
}
}
}
}
hybrid_ls_pvt::~hybrid_ls_pvt()
{
if (d_dump_file.is_open() == true)
{
try
{
d_dump_file.close();
}
catch(const std::exception & ex)
{
LOG(WARNING) << "Exception in destructor closing the dump file " << ex.what();
}
}
}
bool hybrid_ls_pvt::get_PVT(std::map<int,Gnss_Synchro> gnss_observables_map, double hybrid_current_time, bool flag_averaging)
{
std::map<int,Gnss_Synchro>::iterator gnss_observables_iter;
std::map<int,Galileo_Ephemeris>::iterator galileo_ephemeris_iter;
std::map<int,Gps_Ephemeris>::iterator gps_ephemeris_iter;
std::map<int,Gps_CNAV_Ephemeris>::iterator gps_cnav_ephemeris_iter;
arma::vec W; // channels weight vector
arma::vec obs; // pseudoranges observation vector
arma::mat satpos; // satellite positions matrix
int Galileo_week_number = 0;
int GPS_week = 0;
double utc = 0.0;
double GST = 0.0;
double secondsperweek = 604800.0;
//double utc_tx_corrected = 0.0; //utc computed at tx_time_corrected, added for Galileo constellation (in GPS utc is directly computed at TX_time_corrected_s)
double TX_time_corrected_s = 0.0;
double SV_clock_bias_s = 0.0;
this->set_averaging_flag(flag_averaging);
// ********************************************************************************
// ****** PREPARE THE LEAST SQUARES DATA (SV POSITIONS MATRIX AND OBS VECTORS) ****
// ********************************************************************************
int valid_obs = 0; //valid observations counter
for(gnss_observables_iter = gnss_observables_map.begin();
gnss_observables_iter != gnss_observables_map.end();
gnss_observables_iter++)
{
switch(gnss_observables_iter->second.System)
{
case 'E':
{
// 1 Gal - find the ephemeris for the current GALILEO SV observation. The SV PRN ID is the map key
galileo_ephemeris_iter = galileo_ephemeris_map.find(gnss_observables_iter->second.PRN);
if (galileo_ephemeris_iter != galileo_ephemeris_map.end())
{
/*!
* \todo Place here the satellite CN0 (power level, or weight factor)
*/
W.resize(valid_obs + 1, 1);
W(valid_obs) = 1;
// COMMON RX TIME PVT ALGORITHM
double Rx_time = hybrid_current_time;
double Tx_time = Rx_time - gnss_observables_iter->second.Pseudorange_m / GALILEO_C_m_s;
// 2- compute the clock drift using the clock model (broadcast) for this SV
SV_clock_bias_s = galileo_ephemeris_iter->second.sv_clock_drift(Tx_time);
// 3- compute the current ECEF position for this SV using corrected TX time
TX_time_corrected_s = Tx_time - SV_clock_bias_s;
galileo_ephemeris_iter->second.satellitePosition(TX_time_corrected_s);
//store satellite positions in a matrix
satpos.resize(3, valid_obs + 1);
satpos(0, valid_obs) = galileo_ephemeris_iter->second.d_satpos_X;
satpos(1, valid_obs) = galileo_ephemeris_iter->second.d_satpos_Y;
satpos(2, valid_obs) = galileo_ephemeris_iter->second.d_satpos_Z;
// 4- fill the observations vector with the corrected observables
obs.resize(valid_obs + 1, 1);
obs(valid_obs) = gnss_observables_iter->second.Pseudorange_m + SV_clock_bias_s * GALILEO_C_m_s - this->get_time_offset_s() * GALILEO_C_m_s;
this->set_visible_satellites_ID(valid_obs, galileo_ephemeris_iter->second.i_satellite_PRN);
this->set_visible_satellites_CN0_dB(valid_obs, gnss_observables_iter->second.CN0_dB_hz);
Galileo_week_number = galileo_ephemeris_iter->second.WN_5; //for GST
GST = galileo_ephemeris_iter->second.Galileo_System_Time(Galileo_week_number, hybrid_current_time);
// SV ECEF DEBUG OUTPUT
DLOG(INFO) << "ECEF satellite SV ID=" << galileo_ephemeris_iter->second.i_satellite_PRN
<< " X=" << galileo_ephemeris_iter->second.d_satpos_X
<< " [m] Y=" << galileo_ephemeris_iter->second.d_satpos_Y
<< " [m] Z=" << galileo_ephemeris_iter->second.d_satpos_Z
<< " [m] PR_obs=" << obs(valid_obs) << " [m]";
valid_obs++;
}
else // the ephemeris are not available for this SV
{
DLOG(INFO) << "No ephemeris data for SV " << gnss_observables_iter->second.PRN;
}
break;
}
case 'G':
{
// 1 GPS - find the ephemeris for the current GPS SV observation. The SV PRN ID is the map key
std::string sig_(gnss_observables_iter->second.Signal);
if(sig_.compare("1C") == 0)
{
gps_ephemeris_iter = gps_ephemeris_map.find(gnss_observables_iter->second.PRN);
if (gps_ephemeris_iter != gps_ephemeris_map.end())
{
/*!
* \todo Place here the satellite CN0 (power level, or weight factor)
*/
W.resize(valid_obs + 1, 1);
W(valid_obs) = 1;
// COMMON RX TIME PVT ALGORITHM MODIFICATION (Like RINEX files)
// first estimate of transmit time
double Rx_time = hybrid_current_time;
double Tx_time = Rx_time - gnss_observables_iter->second.Pseudorange_m / GPS_C_m_s;
// 2- compute the clock drift using the clock model (broadcast) for this SV, not including relativistic effect
SV_clock_bias_s = gps_ephemeris_iter->second.sv_clock_drift(Tx_time); //- gps_ephemeris_iter->second.d_TGD;
// 3- compute the current ECEF position for this SV using corrected TX time and obtain clock bias including relativistic effect
TX_time_corrected_s = Tx_time - SV_clock_bias_s;
double dtr = gps_ephemeris_iter->second.satellitePosition(TX_time_corrected_s);
//store satellite positions in a matrix
satpos.resize(3, valid_obs + 1);
satpos(0, valid_obs) = gps_ephemeris_iter->second.d_satpos_X;
satpos(1, valid_obs) = gps_ephemeris_iter->second.d_satpos_Y;
satpos(2, valid_obs) = gps_ephemeris_iter->second.d_satpos_Z;
// 4- fill the observations vector with the corrected pseudoranges
// compute code bias: TGD for single frequency
// See IS-GPS-200E section 20.3.3.3.3.2
double sqrt_Gamma=GPS_L1_FREQ_HZ/GPS_L2_FREQ_HZ;
double Gamma=sqrt_Gamma*sqrt_Gamma;
double P1_P2=(1.0-Gamma)*(gps_ephemeris_iter->second.d_TGD* GPS_C_m_s);
double Code_bias_m= P1_P2/(1.0-Gamma);
obs.resize(valid_obs + 1, 1);
obs(valid_obs) = gnss_observables_iter->second.Pseudorange_m + dtr * GPS_C_m_s-Code_bias_m-this->get_time_offset_s() * GPS_C_m_s;
this->set_visible_satellites_ID(valid_obs, gps_ephemeris_iter->second.i_satellite_PRN);
this->set_visible_satellites_CN0_dB(valid_obs, gnss_observables_iter->second.CN0_dB_hz);
// SV ECEF DEBUG OUTPUT
LOG(INFO) << "(new)ECEF GPS L1 CA satellite SV ID=" << gps_ephemeris_iter->second.i_satellite_PRN
<< " TX Time corrected="<<TX_time_corrected_s << " X=" << gps_ephemeris_iter->second.d_satpos_X
<< " [m] Y=" << gps_ephemeris_iter->second.d_satpos_Y
<< " [m] Z=" << gps_ephemeris_iter->second.d_satpos_Z
<< " [m] PR_obs=" << obs(valid_obs) << " [m]";
valid_obs++;
// compute the UTC time for this SV (just to print the associated UTC timestamp)
GPS_week = gps_ephemeris_iter->second.i_GPS_week;
}
else // the ephemeris are not available for this SV
{
DLOG(INFO) << "No ephemeris data for SV " << gnss_observables_iter->first;
}
}
if(sig_.compare("2S") == 0)
{
gps_cnav_ephemeris_iter = gps_cnav_ephemeris_map.find(gnss_observables_iter->second.PRN);
if (gps_cnav_ephemeris_iter != gps_cnav_ephemeris_map.end())
{
/*!
* \todo Place here the satellite CN0 (power level, or weight factor)
*/
W.resize(valid_obs + 1, 1);
W(valid_obs) = 1;
// COMMON RX TIME PVT ALGORITHM MODIFICATION (Like RINEX files)
// first estimate of transmit time
double Rx_time = hybrid_current_time;
double Tx_time = Rx_time - gnss_observables_iter->second.Pseudorange_m / GPS_C_m_s;
// 2- compute the clock drift using the clock model (broadcast) for this SV
SV_clock_bias_s = gps_cnav_ephemeris_iter->second.sv_clock_drift(Tx_time);
// 3- compute the current ECEF position for this SV using corrected TX time
TX_time_corrected_s = Tx_time - SV_clock_bias_s;
//std::cout<<"TX time["<<gps_cnav_ephemeris_iter->second.i_satellite_PRN<<"]="<<TX_time_corrected_s<<std::endl;
double dtr = gps_cnav_ephemeris_iter->second.satellitePosition(TX_time_corrected_s);
//store satellite positions in a matrix
satpos.resize(3, valid_obs + 1);
satpos(0, valid_obs) = gps_cnav_ephemeris_iter->second.d_satpos_X;
satpos(1, valid_obs) = gps_cnav_ephemeris_iter->second.d_satpos_Y;
satpos(2, valid_obs) = gps_cnav_ephemeris_iter->second.d_satpos_Z;
// 4- fill the observations vector with the corrected observables
obs.resize(valid_obs + 1, 1);
obs(valid_obs) = gnss_observables_iter->second.Pseudorange_m + dtr*GPS_C_m_s + SV_clock_bias_s * GPS_C_m_s;
this->set_visible_satellites_ID(valid_obs, gps_cnav_ephemeris_iter->second.i_satellite_PRN);
this->set_visible_satellites_CN0_dB(valid_obs, gnss_observables_iter->second.CN0_dB_hz);
GPS_week = gps_cnav_ephemeris_iter->second.i_GPS_week;
GPS_week=GPS_week%1024; //Necessary due to the increase of WN bits in CNAV message (10 in GPS NAV and 13 in CNAV)
// SV ECEF DEBUG OUTPUT
LOG(INFO) << "(new)ECEF GPS L2M satellite SV ID=" << gps_cnav_ephemeris_iter->second.i_satellite_PRN
<< " TX Time corrected="<<TX_time_corrected_s
<< " X=" << gps_cnav_ephemeris_iter->second.d_satpos_X
<< " [m] Y=" << gps_cnav_ephemeris_iter->second.d_satpos_Y
<< " [m] Z=" << gps_cnav_ephemeris_iter->second.d_satpos_Z
<< " [m] PR_obs=" << obs(valid_obs) << " [m]";
valid_obs++;
}
else // the ephemeris are not available for this SV
{
DLOG(INFO) << "No ephemeris data for SV " << gnss_observables_iter->second.PRN;
}
}
break;
}
default :
DLOG(INFO) << "Hybrid observables: Unknown GNSS";
break;
}
}
// ********************************************************************************
// ****** SOLVE LEAST SQUARES******************************************************
// ********************************************************************************
this->set_num_valid_observations(valid_obs);
LOG(INFO) << "HYBRID PVT: valid observations=" << valid_obs;
if(valid_obs >= 4)
{
arma::vec rx_position_and_time;
DLOG(INFO) << "satpos=" << satpos;
DLOG(INFO) << "obs=" << obs;
DLOG(INFO) << "W=" << W;
try
{
// check if this is the initial position computation
if (this->get_time_offset_s() == 0)
{
// execute Bancroft's algorithm to estimate initial receiver position and time
DLOG(INFO) << " Executing Bancroft algorithm...";
rx_position_and_time = bancroftPos(satpos.t(), obs);
this->set_rx_pos(rx_position_and_time.rows(0, 2)); // save ECEF position for the next iteration
this->set_time_offset_s(rx_position_and_time(3) / GPS_C_m_s); // save time for the next iteration [meters]->[seconds]
}
// Execute WLS using previous position as the initialization point
rx_position_and_time = leastSquarePos(satpos, obs, W);
this->set_rx_pos(rx_position_and_time.rows(0, 2)); // save ECEF position for the next iteration
this->set_time_offset_s(this->get_time_offset_s() + rx_position_and_time(3) / GPS_C_m_s); // accumulate the rx time error for the next iteration [meters]->[seconds]
DLOG(INFO) << "Hybrid Position at TOW=" << hybrid_current_time << " in ECEF (X,Y,Z,t[meters]) = " << rx_position_and_time;
DLOG(INFO) << "Accumulated rx clock error=" << this->get_time_offset_s() << " clock error for this iteration=" << rx_position_and_time(3) / GPS_C_m_s << " [s]";
// Compute GST and Gregorian time
if( GST != 0.0)
{
utc = galileo_utc_model.GST_to_UTC_time(GST, Galileo_week_number);
}
else
{
utc = gps_utc_model.utc_time(TX_time_corrected_s, GPS_week) + secondsperweek * static_cast<double>(GPS_week);
}
// get time string Gregorian calendar
boost::posix_time::time_duration t = boost::posix_time::seconds(utc);
// 22 August 1999 00:00 last Galileo start GST epoch (ICD sec 5.1.2)
boost::posix_time::ptime p_time(boost::gregorian::date(1999, 8, 22), t);
this->set_position_UTC_time(p_time);
cart2geo(static_cast<double>(rx_position_and_time(0)), static_cast<double>(rx_position_and_time(1)), static_cast<double>(rx_position_and_time(2)), 4);
DLOG(INFO) << "Hybrid Position at " << boost::posix_time::to_simple_string(p_time)
<< " is Lat = " << this->get_latitude() << " [deg], Long = " << this->get_longitude()
<< " [deg], Height= " << this->get_height() << " [m]" << " RX time offset= " << this->get_time_offset_s() << " [s]";
// ###### Compute DOPs ########
hybrid_ls_pvt::compute_DOP();
// ######## LOG FILE #########
if(d_flag_dump_enabled == true)
{
// MULTIPLEXED FILE RECORDING - Record results to file
try
{
double tmp_double;
// PVT GPS time
tmp_double = hybrid_current_time;
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
// ECEF User Position East [m]
tmp_double = rx_position_and_time(0);
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
// ECEF User Position North [m]
tmp_double = rx_position_and_time(1);
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
// ECEF User Position Up [m]
tmp_double = rx_position_and_time(2);
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
// User clock offset [s]
tmp_double = rx_position_and_time(3);
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
// GEO user position Latitude [deg]
tmp_double = this->get_latitude();
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
// GEO user position Longitude [deg]
tmp_double = this->get_longitude();
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
// GEO user position Height [m]
tmp_double = this->get_height();
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
}
catch (const std::ifstream::failure& e)
{
LOG(WARNING) << "Exception writing PVT LS dump file " << e.what();
}
}
// MOVING AVERAGE PVT
this->perform_pos_averaging();
}
catch(const std::exception & e)
{
this->set_time_offset_s(0.0); //reset rx time estimation
LOG(WARNING) << "Problem with the solver, invalid solution!" << e.what();
this->set_valid_position(false);
}
}
else
{
this->set_valid_position(false);
}
return this->is_valid_position();
}