gnss-sdr/src/algorithms/observables/gnuradio_blocks/hybrid_observables_cc.cc

602 lines
31 KiB
C++

/*!
* \file hybrid_observables_cc.cc
* \brief Implementation of the pseudorange computation block for Galileo E1
* \author Javier Arribas 2017. jarribas(at)cttc.es
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "hybrid_observables_cc.h"
#include "Galileo_E1.h"
#include "GPS_L1_CA.h"
#include <armadillo>
#include <glog/logging.h>
#include <gnuradio/io_signature.h>
#include <gnuradio/block_detail.h>
#include <gnuradio/buffer.h>
#include <matio.h>
#include <algorithm>
#include <cmath>
#include <iostream>
#include <map>
#include <vector>
#include <utility>
using google::LogMessage;
hybrid_observables_cc_sptr hybrid_make_observables_cc(unsigned int nchannels, bool dump, std::string dump_filename, unsigned int deep_history)
{
return hybrid_observables_cc_sptr(new hybrid_observables_cc(nchannels, dump, dump_filename, deep_history));
}
hybrid_observables_cc::hybrid_observables_cc(unsigned int nchannels, bool dump, std::string dump_filename, unsigned int deep_history) :
gr::block("hybrid_observables_cc", gr::io_signature::make(nchannels, nchannels, sizeof(Gnss_Synchro)),
gr::io_signature::make(nchannels, nchannels, sizeof(Gnss_Synchro)))
{
// initialize internal vars
d_dump = dump;
d_nchannels = nchannels;
d_dump_filename = dump_filename;
history_deep = deep_history;
T_rx_s = 0.0;
T_rx_step_s = 1e-3; // todo: move to gnss-sdr config
for (unsigned int i = 0; i < d_nchannels; i++)
{
d_gnss_synchro_history_queue.push_back(std::deque<Gnss_Synchro>());
}
// ############# ENABLE DATA FILE LOG #################
if (d_dump == true)
{
if (d_dump_file.is_open() == false)
{
try
{
d_dump_file.exceptions (std::ifstream::failbit | std::ifstream::badbit );
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
LOG(INFO) << "Observables dump enabled Log file: " << d_dump_filename.c_str();
}
catch (const std::ifstream::failure & e)
{
LOG(WARNING) << "Exception opening observables dump file " << e.what();
}
}
}
}
hybrid_observables_cc::~hybrid_observables_cc()
{
if (d_dump_file.is_open() == true)
{
try
{
d_dump_file.close();
}
catch(const std::exception & ex)
{
LOG(WARNING) << "Exception in destructor closing the dump file " << ex.what();
}
}
if(d_dump == true)
{
std::cout << "Writing observables .mat files ...";
hybrid_observables_cc::save_matfile();
std::cout << " done." << std::endl;
}
}
int hybrid_observables_cc::save_matfile()
{
// READ DUMP FILE
std::ifstream::pos_type size;
int number_of_double_vars = 7;
int epoch_size_bytes = sizeof(double) * number_of_double_vars * d_nchannels;
std::ifstream dump_file;
dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
try
{
dump_file.open(d_dump_filename.c_str(), std::ios::binary | std::ios::ate);
}
catch(const std::ifstream::failure &e)
{
std::cerr << "Problem opening dump file:" << e.what() << std::endl;
return 1;
}
// count number of epochs and rewind
long int num_epoch = 0;
if (dump_file.is_open())
{
size = dump_file.tellg();
num_epoch = static_cast<long int>(size) / static_cast<long int>(epoch_size_bytes);
dump_file.seekg(0, std::ios::beg);
}
else
{
return 1;
}
double ** RX_time = new double * [d_nchannels];
double ** TOW_at_current_symbol_s = new double * [d_nchannels];
double ** Carrier_Doppler_hz = new double * [d_nchannels];
double ** Carrier_phase_cycles = new double * [d_nchannels];
double ** Pseudorange_m = new double * [d_nchannels];
double ** PRN = new double * [d_nchannels];
double ** Flag_valid_pseudorange = new double * [d_nchannels];
for(unsigned int i = 0; i < d_nchannels; i++)
{
RX_time[i] = new double [num_epoch];
TOW_at_current_symbol_s[i] = new double[num_epoch];
Carrier_Doppler_hz[i] = new double[num_epoch];
Carrier_phase_cycles[i] = new double[num_epoch];
Pseudorange_m[i] = new double[num_epoch];
PRN[i] = new double[num_epoch];
Flag_valid_pseudorange[i] = new double[num_epoch];
}
try
{
if (dump_file.is_open())
{
for(long int i = 0; i < num_epoch; i++)
{
for(unsigned int chan = 0; chan < d_nchannels; chan++)
{
dump_file.read(reinterpret_cast<char *>(&RX_time[chan][i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&TOW_at_current_symbol_s[chan][i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&Carrier_Doppler_hz[chan][i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&Carrier_phase_cycles[chan][i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&Pseudorange_m[chan][i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&PRN[chan][i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&Flag_valid_pseudorange[chan][i]), sizeof(double));
}
}
}
dump_file.close();
}
catch (const std::ifstream::failure &e)
{
std::cerr << "Problem reading dump file:" << e.what() << std::endl;
for(unsigned int i = 0; i < d_nchannels; i++)
{
delete[] RX_time[i];
delete[] TOW_at_current_symbol_s[i];
delete[] Carrier_Doppler_hz[i];
delete[] Carrier_phase_cycles[i];
delete[] Pseudorange_m[i];
delete[] PRN[i];
delete[] Flag_valid_pseudorange[i];
}
delete[] RX_time;
delete[] TOW_at_current_symbol_s;
delete[] Carrier_Doppler_hz;
delete[] Carrier_phase_cycles;
delete[] Pseudorange_m;
delete[] PRN;
delete[] Flag_valid_pseudorange;
return 1;
}
double * RX_time_aux = new double [d_nchannels * num_epoch];
double * TOW_at_current_symbol_s_aux = new double [d_nchannels * num_epoch];
double * Carrier_Doppler_hz_aux = new double [d_nchannels * num_epoch];
double * Carrier_phase_cycles_aux = new double [d_nchannels * num_epoch];
double * Pseudorange_m_aux = new double [d_nchannels * num_epoch];
double * PRN_aux = new double [d_nchannels * num_epoch];
double * Flag_valid_pseudorange_aux = new double[d_nchannels * num_epoch];
unsigned int k = 0;
for(long int j = 0; j < num_epoch; j++ )
{
for(unsigned int i = 0; i < d_nchannels; i++ )
{
RX_time_aux[k] = RX_time[i][j];
TOW_at_current_symbol_s_aux[k] = TOW_at_current_symbol_s[i][j];
Carrier_Doppler_hz_aux[k] = Carrier_Doppler_hz[i][j];
Carrier_phase_cycles_aux[k] = Carrier_phase_cycles[i][j];
Pseudorange_m_aux[k] = Pseudorange_m[i][j];
PRN_aux[k] = PRN[i][j];
Flag_valid_pseudorange_aux[k] = Flag_valid_pseudorange[i][j];
k++;
}
}
// WRITE MAT FILE
mat_t *matfp;
matvar_t *matvar;
std::string filename = d_dump_filename;
filename.erase(filename.length() - 4, 4);
filename.append(".mat");
matfp = Mat_CreateVer(filename.c_str(), NULL, MAT_FT_MAT73);
if(reinterpret_cast<long*>(matfp) != NULL)
{
size_t dims[2] = {static_cast<size_t>(d_nchannels), static_cast<size_t>(num_epoch)};
matvar = Mat_VarCreate("RX_time", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, RX_time_aux, MAT_F_DONT_COPY_DATA);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("TOW_at_current_symbol_s", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, TOW_at_current_symbol_s_aux, MAT_F_DONT_COPY_DATA);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("Carrier_Doppler_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, Carrier_Doppler_hz_aux, MAT_F_DONT_COPY_DATA);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("Carrier_phase_cycles", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, Carrier_phase_cycles_aux, MAT_F_DONT_COPY_DATA);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("Pseudorange_m", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, Pseudorange_m_aux, MAT_F_DONT_COPY_DATA);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("PRN", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, PRN_aux, MAT_F_DONT_COPY_DATA);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("Flag_valid_pseudorange", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, Flag_valid_pseudorange_aux, MAT_F_DONT_COPY_DATA);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
}
Mat_Close(matfp);
for(unsigned int i = 0; i < d_nchannels; i++)
{
delete[] RX_time[i];
delete[] TOW_at_current_symbol_s[i];
delete[] Carrier_Doppler_hz[i];
delete[] Carrier_phase_cycles[i];
delete[] Pseudorange_m[i];
delete[] PRN[i];
delete[] Flag_valid_pseudorange[i];
}
delete[] RX_time;
delete[] TOW_at_current_symbol_s;
delete[] Carrier_Doppler_hz;
delete[] Carrier_phase_cycles;
delete[] Pseudorange_m;
delete[] PRN;
delete[] Flag_valid_pseudorange;
delete[] RX_time_aux;
delete[] TOW_at_current_symbol_s_aux;
delete[] Carrier_Doppler_hz_aux;
delete[] Carrier_phase_cycles_aux;
delete[] Pseudorange_m_aux;
delete[] PRN_aux;
delete[] Flag_valid_pseudorange_aux;
return 0;
}
bool Hybrid_pairCompare_gnss_synchro_sample_counter(const std::pair<int,Gnss_Synchro>& a, const std::pair<int,Gnss_Synchro>& b)
{
return (a.second.Tracking_sample_counter) < (b.second.Tracking_sample_counter);
}
bool Hybrid_valueCompare_gnss_synchro_sample_counter(const Gnss_Synchro& a, unsigned long int b)
{
return (a.Tracking_sample_counter) < (b);
}
bool Hybrid_valueCompare_gnss_synchro_receiver_time(const Gnss_Synchro& a, double b)
{
return ((static_cast<double>(a.Tracking_sample_counter) + static_cast<double>(a.Code_phase_samples)) / static_cast<double>(a.fs) ) < (b);
}
bool Hybrid_pairCompare_gnss_synchro_d_TOW(const std::pair<int,Gnss_Synchro>& a, const std::pair<int,Gnss_Synchro>& b)
{
return (a.second.TOW_at_current_symbol_s) < (b.second.TOW_at_current_symbol_s);
}
bool Hybrid_valueCompare_gnss_synchro_d_TOW(const Gnss_Synchro& a, double b)
{
return (a.TOW_at_current_symbol_s) < (b);
}
void hybrid_observables_cc::forecast (int noutput_items __attribute__((unused)), gr_vector_int &ninput_items_required)
{
bool zero_samples = true;
for(unsigned int i = 0; i < d_nchannels; i++)
{
int items = detail()->input(i)->items_available();
if (items > 0) zero_samples = false;
ninput_items_required[i] = items; // set the required available samples in each call
}
if (zero_samples == true)
{
for(unsigned int i = 0; i < d_nchannels; i++)
{
ninput_items_required[i] = 1; // set the required available samples in each call
}
}
}
int hybrid_observables_cc::general_work (int noutput_items ,
gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
const Gnss_Synchro **in = reinterpret_cast<const Gnss_Synchro **>(&input_items[0]); // Get the input buffer pointer
Gnss_Synchro **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]); // Get the output buffer pointer
int n_outputs = 0;
int n_consume[d_nchannels];
double past_history_s = 100e-3;
Gnss_Synchro current_gnss_synchro[d_nchannels];
Gnss_Synchro aux = Gnss_Synchro();
for(unsigned int i = 0; i < d_nchannels; i++)
{
current_gnss_synchro[i] = aux;
}
/*
* 1. Read the GNSS SYNCHRO objects from available channels.
* Multi-rate GNURADIO Block. Read how many input items are avaliable in each channel
* Record all synchronization data into queues
*/
for (unsigned int i = 0; i < d_nchannels; i++)
{
n_consume[i] = ninput_items[i]; // full throttle
for (int j = 0; j < n_consume[i]; j++)
{
d_gnss_synchro_history_queue[i].push_back(in[i][j]);
}
}
bool channel_history_ok;
do
{
channel_history_ok = true;
for (unsigned int i = 0; i < d_nchannels; i++)
{
if (d_gnss_synchro_history_queue[i].size() < history_deep)
{
channel_history_ok = false;
}
}
if (channel_history_ok == true)
{
std::map<int,Gnss_Synchro>::const_iterator gnss_synchro_map_iter;
std::deque<Gnss_Synchro>::const_iterator gnss_synchro_deque_iter;
// 1. If the RX time is not set, set the Rx time
if (T_rx_s == 0)
{
// 0. Read a gnss_synchro snapshot from the queue and store it in a map
std::map<int,Gnss_Synchro> gnss_synchro_map;
for (unsigned int i = 0; i < d_nchannels; i++)
{
gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(d_gnss_synchro_history_queue[i].front().Channel_ID,
d_gnss_synchro_history_queue[i].front()));
}
gnss_synchro_map_iter = min_element(gnss_synchro_map.cbegin(),
gnss_synchro_map.cend(),
Hybrid_pairCompare_gnss_synchro_sample_counter);
T_rx_s = static_cast<double>(gnss_synchro_map_iter->second.Tracking_sample_counter) / static_cast<double>(gnss_synchro_map_iter->second.fs);
T_rx_s = floor(T_rx_s * 1000.0) / 1000.0; // truncate to ms
T_rx_s += past_history_s; // increase T_rx to have a minimum past history to interpolate
}
// 2. Realign RX time in all valid channels
std::map<int,Gnss_Synchro> realigned_gnss_synchro_map; // container for the aligned set of observables for the selected T_rx
std::map<int,Gnss_Synchro> adjacent_gnss_synchro_map; // container for the previous observable values to interpolate
// shift channels history to match the reference TOW
for (unsigned int i = 0; i < d_nchannels; i++)
{
gnss_synchro_deque_iter = std::lower_bound(d_gnss_synchro_history_queue[i].cbegin(),
d_gnss_synchro_history_queue[i].cend(),
T_rx_s,
Hybrid_valueCompare_gnss_synchro_receiver_time);
if (gnss_synchro_deque_iter != d_gnss_synchro_history_queue[i].cend())
{
if (gnss_synchro_deque_iter->Flag_valid_word == true)
{
double T_rx_channel = static_cast<double>(gnss_synchro_deque_iter->Tracking_sample_counter) / static_cast<double>(gnss_synchro_deque_iter->fs);
double delta_T_rx_s = T_rx_channel - T_rx_s;
// check that T_rx difference is less than a threshold (the correlation interval)
if (delta_T_rx_s * 1000.0 < static_cast<double>(gnss_synchro_deque_iter->correlation_length_ms))
{
// record the word structure in a map for pseudorange computation
// save the previous observable
int distance = std::distance(d_gnss_synchro_history_queue[i].cbegin(), gnss_synchro_deque_iter);
if (distance > 0)
{
if (d_gnss_synchro_history_queue[i].at(distance - 1).Flag_valid_word)
{
double T_rx_channel_prev = static_cast<double>(d_gnss_synchro_history_queue[i].at(distance - 1).Tracking_sample_counter) / static_cast<double>(gnss_synchro_deque_iter->fs);
double delta_T_rx_s_prev = T_rx_channel_prev - T_rx_s;
if (fabs(delta_T_rx_s_prev) < fabs(delta_T_rx_s))
{
realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(d_gnss_synchro_history_queue[i].at(distance - 1).Channel_ID,
d_gnss_synchro_history_queue[i].at(distance - 1)));
adjacent_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID, *gnss_synchro_deque_iter));
}
else
{
realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID, *gnss_synchro_deque_iter));
adjacent_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(d_gnss_synchro_history_queue[i].at(distance - 1).Channel_ID,
d_gnss_synchro_history_queue[i].at(distance - 1)));
}
}
}
else
{
realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID, *gnss_synchro_deque_iter));
}
}
}
}
}
if(!realigned_gnss_synchro_map.empty())
{
/*
* 2.1 Use CURRENT set of measurements and find the nearest satellite
* common RX time algorithm
*/
// what is the most recent symbol TOW in the current set? -> this will be the reference symbol
gnss_synchro_map_iter = max_element(realigned_gnss_synchro_map.cbegin(),
realigned_gnss_synchro_map.cend(),
Hybrid_pairCompare_gnss_synchro_d_TOW);
double ref_fs_hz = static_cast<double>(gnss_synchro_map_iter->second.fs);
// compute interpolated TOW value at T_rx_s
int ref_channel_key = gnss_synchro_map_iter->second.Channel_ID;
Gnss_Synchro adj_obs;
adj_obs = adjacent_gnss_synchro_map.at(ref_channel_key);
double ref_adj_T_rx_s = static_cast<double>(adj_obs.Tracking_sample_counter) / ref_fs_hz + adj_obs.Code_phase_samples / ref_fs_hz;
double d_TOW_reference = gnss_synchro_map_iter->second.TOW_at_current_symbol_s;
double d_ref_T_rx_s = static_cast<double>(gnss_synchro_map_iter->second.Tracking_sample_counter) / ref_fs_hz + gnss_synchro_map_iter->second.Code_phase_samples / ref_fs_hz;
double selected_T_rx_s = T_rx_s;
// two points linear interpolation using adjacent (adj) values: y=y1+(x-x1)*(y2-y1)/(x2-x1)
double ref_TOW_at_T_rx_s = adj_obs.TOW_at_current_symbol_s +
(selected_T_rx_s - ref_adj_T_rx_s) * (d_TOW_reference - adj_obs.TOW_at_current_symbol_s) / (d_ref_T_rx_s - ref_adj_T_rx_s);
// Now compute RX time differences due to the PRN alignment in the correlators
double traveltime_ms;
double pseudorange_m;
double channel_T_rx_s;
double channel_fs_hz;
double channel_TOW_s;
for(gnss_synchro_map_iter = realigned_gnss_synchro_map.cbegin(); gnss_synchro_map_iter != realigned_gnss_synchro_map.cend(); gnss_synchro_map_iter++)
{
channel_fs_hz = static_cast<double>(gnss_synchro_map_iter->second.fs);
channel_TOW_s = gnss_synchro_map_iter->second.TOW_at_current_symbol_s;
channel_T_rx_s = static_cast<double>(gnss_synchro_map_iter->second.Tracking_sample_counter) / channel_fs_hz + gnss_synchro_map_iter->second.Code_phase_samples / channel_fs_hz;
// compute interpolated observation values
// two points linear interpolation using adjacent (adj) values: y=y1+(x-x1)*(y2-y1)/(x2-x1)
// TOW at the selected receiver time T_rx_s
int element_key = gnss_synchro_map_iter->second.Channel_ID;
try
{
adj_obs = adjacent_gnss_synchro_map.at(element_key);
}
catch(const std::exception & ex)
{
continue;
}
double adj_T_rx_s = static_cast<double>(adj_obs.Tracking_sample_counter) / channel_fs_hz + adj_obs.Code_phase_samples / channel_fs_hz;
double channel_TOW_at_T_rx_s = adj_obs.TOW_at_current_symbol_s + (selected_T_rx_s - adj_T_rx_s) * (channel_TOW_s - adj_obs.TOW_at_current_symbol_s) / (channel_T_rx_s - adj_T_rx_s);
// Doppler and Accumulated carrier phase
double Carrier_phase_lin_rads = adj_obs.Carrier_phase_rads + (selected_T_rx_s - adj_T_rx_s) * (gnss_synchro_map_iter->second.Carrier_phase_rads - adj_obs.Carrier_phase_rads) / (channel_T_rx_s - adj_T_rx_s);
double Carrier_Doppler_lin_hz = adj_obs.Carrier_Doppler_hz + (selected_T_rx_s - adj_T_rx_s) * (gnss_synchro_map_iter->second.Carrier_Doppler_hz - adj_obs.Carrier_Doppler_hz) / (channel_T_rx_s - adj_T_rx_s);
// compute the pseudorange (no rx time offset correction)
traveltime_ms = (ref_TOW_at_T_rx_s - channel_TOW_at_T_rx_s) * 1000.0 + GPS_STARTOFFSET_ms;
// convert to meters
pseudorange_m = traveltime_ms * GPS_C_m_ms; // [m]
// update the pseudorange object
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID] = gnss_synchro_map_iter->second;
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Pseudorange_m = pseudorange_m;
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Flag_valid_pseudorange = true;
// Save the estimated RX time (no RX clock offset correction yet!)
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].RX_time = ref_TOW_at_T_rx_s + GPS_STARTOFFSET_ms / 1000.0;
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Carrier_phase_rads = Carrier_phase_lin_rads;
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Carrier_Doppler_hz = Carrier_Doppler_lin_hz;
}
if(d_dump == true)
{
// MULTIPLEXED FILE RECORDING - Record results to file
try
{
double tmp_double;
for (unsigned int i = 0; i < d_nchannels; i++)
{
tmp_double = current_gnss_synchro[i].RX_time;
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
tmp_double = current_gnss_synchro[i].TOW_at_current_symbol_s;
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
tmp_double = current_gnss_synchro[i].Carrier_Doppler_hz;
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
tmp_double = current_gnss_synchro[i].Carrier_phase_rads / GPS_TWO_PI;
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
tmp_double = current_gnss_synchro[i].Pseudorange_m;
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
tmp_double = current_gnss_synchro[i].PRN;
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
tmp_double = static_cast<double>(current_gnss_synchro[i].Flag_valid_pseudorange);
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
}
}
catch (const std::ifstream::failure& e)
{
LOG(WARNING) << "Exception writing observables dump file " << e.what();
}
}
for (unsigned int i = 0; i < d_nchannels; i++)
{
out[i][n_outputs] = current_gnss_synchro[i];
}
n_outputs++;
}
// Move RX time
T_rx_s = T_rx_s + T_rx_step_s;
// pop old elements from queue
for (unsigned int i = 0; i < d_nchannels; i++)
{
while (static_cast<double>(d_gnss_synchro_history_queue[i].front().Tracking_sample_counter) / static_cast<double>(d_gnss_synchro_history_queue[i].front().fs) < (T_rx_s - past_history_s))
{
d_gnss_synchro_history_queue[i].pop_front();
}
}
}
} while(channel_history_ok == true && noutput_items > n_outputs);
// Multi-rate consume!
for (unsigned int i = 0; i < d_nchannels; i++)
{
consume(i, n_consume[i]); // which input, how many items
}
return n_outputs;
}