gnss-sdr/src/algorithms/libs/galileo_e1_signal_processin...

259 lines
9.5 KiB
C++

/*!
* \file galileo_e1_signal_processing.cc
* \brief This library implements various functions for Galileo E1 signals
* \author Luis Esteve, 2012. luis(at)epsilon-formacion.com
*
* Detailed description of the file here if needed.
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "galileo_e1_signal_processing.h"
#include "Galileo_E1.h"
#include "gnss_signal_processing.h"
#include <string>
void galileo_e1_code_gen_int(int* _dest, char _Signal[3], signed int _prn)
{
std::string _galileo_signal = _Signal;
signed int prn = _prn - 1;
int index = 0;
/* A simple error check */
if ((_prn < 1) || (_prn > 50))
{
return;
}
if (_galileo_signal.rfind("1B") != std::string::npos && _galileo_signal.length() >= 2)
{
for (size_t i = 0; i < Galileo_E1_B_PRIMARY_CODE[prn].length(); i++)
{
hex_to_binary_converter(&_dest[index], Galileo_E1_B_PRIMARY_CODE[prn].at(i));
index = index + 4;
}
}
else if (_galileo_signal.rfind("1C") != std::string::npos && _galileo_signal.length() >= 2)
{
for (size_t i = 0; i < Galileo_E1_C_PRIMARY_CODE[prn].length(); i++)
{
hex_to_binary_converter(&_dest[index], Galileo_E1_C_PRIMARY_CODE[prn].at(i));
index = index + 4;
}
}
else
{
return;
}
}
void galileo_e1_sinboc_11_gen_int(int* _dest, int* _prn, unsigned int _length_out)
{
const unsigned int _length_in = Galileo_E1_B_CODE_LENGTH_CHIPS;
unsigned int _period = static_cast<unsigned int>( _length_out / _length_in );
for (unsigned int i = 0; i < _length_in; i++)
{
for (unsigned int j = 0; j < (_period / 2); j++)
{
_dest[i * _period + j] = _prn[i];
}
for (unsigned int j = (_period / 2); j < _period; j++)
{
_dest[i * _period + j] = - _prn[i];
}
}
}
void galileo_e1_sinboc_61_gen_int(int* _dest, int* _prn, unsigned int _length_out)
{
const unsigned int _length_in = Galileo_E1_B_CODE_LENGTH_CHIPS;
unsigned int _period = static_cast<unsigned int>(_length_out / _length_in);
for (unsigned int i = 0; i < _length_in; i++)
{
for (unsigned int j = 0; j < _period; j += 2)
{
_dest[i * _period + j] = _prn[i];
}
for (unsigned int j = 1; j < _period; j += 2)
{
_dest[i * _period + j] = - _prn[i];
}
}
}
void galileo_e1_gen_float(float* _dest, int* _prn, char _Signal[3])
{
std::string _galileo_signal = _Signal;
const unsigned int _codeLength = 12 * Galileo_E1_B_CODE_LENGTH_CHIPS;
const float alpha = sqrt(10.0 / 11.0);
const float beta = sqrt(1.0 / 11.0);
int sinboc_11[12 * 4092]; // _codeLength not accepted by Clang
int sinboc_61[12 * 4092];
galileo_e1_sinboc_11_gen_int(sinboc_11, _prn, _codeLength); //generate sinboc(1,1) 12 samples per chip
galileo_e1_sinboc_61_gen_int(sinboc_61, _prn, _codeLength); //generate sinboc(6,1) 12 samples per chip
if (_galileo_signal.rfind("1B") != std::string::npos && _galileo_signal.length() >= 2)
{
for (unsigned int i = 0; i < _codeLength; i++)
{
_dest[i] = alpha * static_cast<float>(sinboc_11[i]) +
beta * static_cast<float>(sinboc_61[i]);
}
}
else if (_galileo_signal.rfind("1C") != std::string::npos && _galileo_signal.length() >= 2)
{
for (unsigned int i = 0; i < _codeLength; i++)
{
_dest[i] = alpha * static_cast<float>(sinboc_11[i]) -
beta * static_cast<float>(sinboc_61[i]);
}
}
else
return;
}
void galileo_e1_code_gen_float_sampled(float* _dest, char _Signal[3],
bool _cboc, unsigned int _prn, signed int _fs, unsigned int _chip_shift,
bool _secondary_flag)
{
// This function is based on the GNU software GPS for MATLAB in Kay Borre's book
std::string _galileo_signal = _Signal;
unsigned int _samplesPerCode;
const int _codeFreqBasis = Galileo_E1_CODE_CHIP_RATE_HZ; //Hz
unsigned int _codeLength = Galileo_E1_B_CODE_LENGTH_CHIPS;
int primary_code_E1_chips[static_cast<int>(Galileo_E1_B_CODE_LENGTH_CHIPS)];
_samplesPerCode = static_cast<unsigned int>( static_cast<double>(_fs) / (static_cast<double>(_codeFreqBasis ) / static_cast<double>(_codeLength)));
const int _samplesPerChip = (_cboc == true) ? 12 : 2;
const unsigned int delay = ((static_cast<int>(Galileo_E1_B_CODE_LENGTH_CHIPS) - _chip_shift)
% static_cast<int>(Galileo_E1_B_CODE_LENGTH_CHIPS))
* _samplesPerCode / Galileo_E1_B_CODE_LENGTH_CHIPS;
galileo_e1_code_gen_int(primary_code_E1_chips, _Signal, _prn); //generate Galileo E1 code, 1 sample per chip
float* _signal_E1;
_codeLength = _samplesPerChip * Galileo_E1_B_CODE_LENGTH_CHIPS;
_signal_E1 = new float[_codeLength];
if (_cboc == true)
{
galileo_e1_gen_float(_signal_E1, primary_code_E1_chips, _Signal); //generate cboc 12 samples per chip
}
else
{
int _signal_E1_int[_codeLength];
galileo_e1_sinboc_11_gen_int(_signal_E1_int, primary_code_E1_chips, _codeLength); //generate sinboc(1,1) 2 samples per chip
for( unsigned int ii = 0; ii < _codeLength; ++ii )
{
_signal_E1[ii] = static_cast< float >( _signal_E1_int[ii] );
}
}
if (_fs != _samplesPerChip * _codeFreqBasis)
{
float* _resampled_signal = new float[_samplesPerCode];
resampler(_signal_E1, _resampled_signal, _samplesPerChip * _codeFreqBasis, _fs,
_codeLength, _samplesPerCode); //resamples code to fs
delete[] _signal_E1;
_signal_E1 = _resampled_signal;
}
if (_galileo_signal.rfind("1C") != std::string::npos && _galileo_signal.length() >= 2 && _secondary_flag)
{
float* _signal_E1C_secondary = new float[static_cast<int>(Galileo_E1_C_SECONDARY_CODE_LENGTH) * _samplesPerCode];
for (unsigned int i = 0; i < static_cast<unsigned int>(Galileo_E1_C_SECONDARY_CODE_LENGTH); i++)
{
for (unsigned k = 0; k < _samplesPerCode; k++)
{
_signal_E1C_secondary[i*_samplesPerCode + k] = _signal_E1[k]
* (Galileo_E1_C_SECONDARY_CODE.at(i) == '0' ? 1.0f : -1.0f);
}
}
_samplesPerCode *= static_cast<int>(Galileo_E1_C_SECONDARY_CODE_LENGTH);
delete[] _signal_E1;
_signal_E1 = _signal_E1C_secondary;
}
for (unsigned int i = 0; i < _samplesPerCode; i++)
{
_dest[(i + delay) % _samplesPerCode] = _signal_E1[i];
}
delete[] _signal_E1;
}
void galileo_e1_code_gen_complex_sampled(std::complex<float>* _dest, char _Signal[3],
bool _cboc, unsigned int _prn, signed int _fs, unsigned int _chip_shift,
bool _secondary_flag)
{
std::string _galileo_signal = _Signal;
const int _codeFreqBasis = Galileo_E1_CODE_CHIP_RATE_HZ; //Hz
unsigned int _samplesPerCode = static_cast<unsigned int>( static_cast<double>(_fs) /
(static_cast<double>(_codeFreqBasis ) / static_cast<double>(Galileo_E1_B_CODE_LENGTH_CHIPS)));
if (_galileo_signal.rfind("1C") != std::string::npos && _galileo_signal.length() >= 2 && _secondary_flag)
{
_samplesPerCode *= static_cast<int>(Galileo_E1_C_SECONDARY_CODE_LENGTH);
}
float real_code[_samplesPerCode];
galileo_e1_code_gen_float_sampled( real_code, _Signal, _cboc, _prn, _fs, _chip_shift, _secondary_flag );
for( unsigned int ii = 0; ii < _samplesPerCode; ++ii )
{
_dest[ii] = std::complex< float >( real_code[ii], 0.0f );
}
}
void galileo_e1_code_gen_float_sampled(float* _dest, char _Signal[3],
bool _cboc, unsigned int _prn, signed int _fs, unsigned int _chip_shift)
{
galileo_e1_code_gen_float_sampled(_dest, _Signal, _cboc, _prn, _fs, _chip_shift, false);
}
void galileo_e1_code_gen_complex_sampled(std::complex<float>* _dest, char _Signal[3],
bool _cboc, unsigned int _prn, signed int _fs, unsigned int _chip_shift)
{
galileo_e1_code_gen_complex_sampled(_dest, _Signal, _cboc, _prn, _fs, _chip_shift, false);
}