gnss-sdr/src/algorithms/tracking/gnuradio_blocks/gps_l1_ca_tcp_connector_tra...

590 lines
26 KiB
C++

/*!
* \file gps_l1_ca_tcp_connector_tracking_cc.cc
* \brief Implementation of a TCP connector block based on Code DLL + carrier PLL
* \author David Pubill, 2012. dpubill(at)cttc.es
* Javier Arribas, 2011. jarribas(at)cttc.es
*
*
* Code DLL + carrier PLL according to the algorithms described in:
* [1] K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency
* Approach, Birkhauser, 2007
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "gps_l1_ca_tcp_connector_tracking_cc.h"
#include "GPS_L1_CA.h"
#include "gnss_sdr_flags.h"
#include "gps_sdr_signal_processing.h"
#include "lock_detectors.h"
#include "tcp_communication.h"
#include "tcp_packet_data.h"
#include "tracking_discriminators.h"
#include <glog/logging.h>
#include <gnuradio/io_signature.h>
#include <volk_gnsssdr/volk_gnsssdr.h>
#include <cmath>
#include <exception>
#include <iostream>
#include <sstream>
#include <utility>
using google::LogMessage;
gps_l1_ca_tcp_connector_tracking_cc_sptr
gps_l1_ca_tcp_connector_make_tracking_cc(
int64_t fs_in,
uint32_t vector_length,
bool dump,
const std::string &dump_filename,
float early_late_space_chips,
size_t port_ch0)
{
return gps_l1_ca_tcp_connector_tracking_cc_sptr(new Gps_L1_Ca_Tcp_Connector_Tracking_cc(
fs_in, vector_length, dump, dump_filename, early_late_space_chips, port_ch0));
}
void Gps_L1_Ca_Tcp_Connector_Tracking_cc::forecast(int noutput_items,
gr_vector_int &ninput_items_required)
{
if (noutput_items != 0)
{
ninput_items_required[0] = static_cast<int32_t>(d_vector_length) * 2; //set the required available samples in each call
}
}
Gps_L1_Ca_Tcp_Connector_Tracking_cc::Gps_L1_Ca_Tcp_Connector_Tracking_cc(
int64_t fs_in,
uint32_t vector_length,
bool dump,
const std::string &dump_filename,
float early_late_space_chips,
size_t port_ch0) : gr::block("Gps_L1_Ca_Tcp_Connector_Tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
{
this->message_port_register_out(pmt::mp("events"));
// initialize internal vars
d_dump = dump;
d_fs_in = fs_in;
d_vector_length = vector_length;
d_dump_filename = dump_filename;
//--- DLL variables --------------------------------------------------------
d_early_late_spc_chips = early_late_space_chips; // Define early-late offset (in chips)
//--- TCP CONNECTOR variables --------------------------------------------------------
d_port_ch0 = port_ch0;
d_port = 0;
d_listen_connection = true;
d_control_id = 0;
// Initialization of local code replica
// Get space for a vector with the C/A code replica sampled 1x/chip
d_ca_code = static_cast<gr_complex *>(volk_gnsssdr_malloc((GPS_L1_CA_CODE_LENGTH_CHIPS) * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
// correlator outputs (scalar)
d_n_correlator_taps = 3; // Very-Early, Early, Prompt, Late, Very-Late
d_correlator_outs = static_cast<gr_complex *>(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
for (int32_t n = 0; n < d_n_correlator_taps; n++)
{
d_correlator_outs[n] = gr_complex(0, 0);
}
// map memory pointers of correlator outputs
d_Early = &d_correlator_outs[0];
d_Prompt = &d_correlator_outs[1];
d_Late = &d_correlator_outs[2];
d_local_code_shift_chips = static_cast<float *>(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(float), volk_gnsssdr_get_alignment()));
// Set TAPs delay values [chips]
d_local_code_shift_chips[0] = -d_early_late_spc_chips;
d_local_code_shift_chips[1] = 0.0;
d_local_code_shift_chips[2] = d_early_late_spc_chips;
d_correlation_length_samples = d_vector_length;
multicorrelator_cpu.init(2 * d_correlation_length_samples, d_n_correlator_taps);
//--- Perform initializations ------------------------------
// define initial code frequency basis of NCO
d_code_freq_hz = GPS_L1_CA_CODE_RATE_HZ;
// define residual code phase (in chips)
d_rem_code_phase_samples = 0.0;
// define residual carrier phase
d_rem_carr_phase_rad = 0.0;
// sample synchronization
d_sample_counter = 0ULL;
d_sample_counter_seconds = 0;
d_acq_sample_stamp = 0ULL;
d_enable_tracking = false;
d_pull_in = false;
d_current_prn_length_samples = static_cast<int32_t>(d_vector_length);
// CN0 estimation and lock detector buffers
d_cn0_estimation_counter = 0;
d_Prompt_buffer = new gr_complex[FLAGS_cn0_samples];
d_carrier_lock_test = 1;
d_CN0_SNV_dB_Hz = 0;
d_carrier_lock_fail_counter = 0;
d_carrier_lock_threshold = FLAGS_carrier_lock_th;
systemName["G"] = std::string("GPS");
systemName["R"] = std::string("GLONASS");
systemName["S"] = std::string("SBAS");
systemName["E"] = std::string("Galileo");
systemName["C"] = std::string("Compass");
d_acquisition_gnss_synchro = nullptr;
d_channel = 0;
d_next_rem_code_phase_samples = 0;
d_acq_code_phase_samples = 0.0;
d_acq_carrier_doppler_hz = 0.0;
d_carrier_doppler_hz = 0.0;
d_acc_carrier_phase_rad = 0.0;
d_code_phase_samples = 0;
d_next_prn_length_samples = 0;
d_code_phase_step_chips = 0.0;
}
void Gps_L1_Ca_Tcp_Connector_Tracking_cc::start_tracking()
{
/*
* correct the code phase according to the delay between acq and trk
*/
d_acq_code_phase_samples = d_acquisition_gnss_synchro->Acq_delay_samples;
d_acq_carrier_doppler_hz = d_acquisition_gnss_synchro->Acq_doppler_hz;
d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples;
int64_t acq_trk_diff_samples;
float acq_trk_diff_seconds;
acq_trk_diff_samples = static_cast<int64_t>(d_sample_counter) - static_cast<int64_t>(d_acq_sample_stamp);
std::cout << "acq_trk_diff_samples=" << acq_trk_diff_samples << std::endl;
acq_trk_diff_seconds = static_cast<float>(acq_trk_diff_samples) / static_cast<float>(d_fs_in);
//doppler effect
// Fd=(C/(C+Vr))*F
float radial_velocity;
radial_velocity = (GPS_L1_FREQ_HZ + d_acq_carrier_doppler_hz) / GPS_L1_FREQ_HZ;
// new chip and prn sequence periods based on acq Doppler
float T_chip_mod_seconds;
float T_prn_mod_seconds;
float T_prn_mod_samples;
d_code_freq_hz = radial_velocity * GPS_L1_CA_CODE_RATE_HZ;
d_code_phase_step_chips = static_cast<double>(d_code_freq_hz) / static_cast<double>(d_fs_in);
T_chip_mod_seconds = 1 / d_code_freq_hz;
T_prn_mod_seconds = T_chip_mod_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
T_prn_mod_samples = T_prn_mod_seconds * static_cast<float>(d_fs_in);
d_next_prn_length_samples = std::round(T_prn_mod_samples);
float T_prn_true_seconds = GPS_L1_CA_CODE_LENGTH_CHIPS / GPS_L1_CA_CODE_RATE_HZ;
float T_prn_true_samples = T_prn_true_seconds * static_cast<float>(d_fs_in);
float T_prn_diff_seconds;
T_prn_diff_seconds = T_prn_true_seconds - T_prn_mod_seconds;
float N_prn_diff;
N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds;
float corrected_acq_phase_samples, delay_correction_samples;
corrected_acq_phase_samples = std::fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * static_cast<float>(d_fs_in)), T_prn_true_samples);
if (corrected_acq_phase_samples < 0)
{
corrected_acq_phase_samples = T_prn_mod_samples + corrected_acq_phase_samples;
}
delay_correction_samples = d_acq_code_phase_samples - corrected_acq_phase_samples;
d_acq_code_phase_samples = corrected_acq_phase_samples;
d_carrier_doppler_hz = d_acq_carrier_doppler_hz;
// generate local reference ALWAYS starting at chip 1 (1 sample per chip)
gps_l1_ca_code_gen_complex(d_ca_code, d_acquisition_gnss_synchro->PRN, 0);
multicorrelator_cpu.set_local_code_and_taps(static_cast<int32_t>(GPS_L1_CA_CODE_LENGTH_CHIPS), d_ca_code, d_local_code_shift_chips);
for (int32_t n = 0; n < d_n_correlator_taps; n++)
{
d_correlator_outs[n] = gr_complex(0, 0);
}
d_carrier_lock_fail_counter = 0;
d_rem_code_phase_samples = 0;
d_rem_carr_phase_rad = 0;
d_rem_code_phase_samples = 0;
d_next_rem_code_phase_samples = 0;
d_acc_carrier_phase_rad = 0;
d_code_phase_samples = d_acq_code_phase_samples;
std::string sys_ = &d_acquisition_gnss_synchro->System;
sys = sys_.substr(0, 1);
// DEBUG OUTPUT
std::cout << "Tracking of GPS L1 C/A signal started on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << std::endl;
LOG(INFO) << "Tracking of GPS L1 C/A signal for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel;
// enable tracking
d_pull_in = true;
d_enable_tracking = true;
LOG(INFO) << "PULL-IN Doppler [Hz]=" << d_carrier_doppler_hz
<< " Code Phase correction [samples]=" << delay_correction_samples
<< " PULL-IN Code Phase [samples]=" << d_acq_code_phase_samples;
}
Gps_L1_Ca_Tcp_Connector_Tracking_cc::~Gps_L1_Ca_Tcp_Connector_Tracking_cc()
{
if (d_dump_file.is_open())
{
try
{
d_dump_file.close();
}
catch (const std::exception &ex)
{
LOG(WARNING) << "Exception in destructor " << ex.what();
}
}
try
{
volk_gnsssdr_free(d_local_code_shift_chips);
volk_gnsssdr_free(d_correlator_outs);
volk_gnsssdr_free(d_ca_code);
d_tcp_com.close_tcp_connection(d_port);
delete[] d_Prompt_buffer;
multicorrelator_cpu.free();
}
catch (const std::exception &ex)
{
LOG(WARNING) << "Exception in destructor " << ex.what();
}
}
void Gps_L1_Ca_Tcp_Connector_Tracking_cc::set_channel(uint32_t channel)
{
d_channel = channel;
LOG(INFO) << "Tracking Channel set to " << d_channel;
// ############# ENABLE DATA FILE LOG #################
if (d_dump == true)
{
if (d_dump_file.is_open() == false)
{
try
{
d_dump_filename.append(std::to_string(d_channel));
d_dump_filename.append(".dat");
d_dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str();
}
catch (const std::ifstream::failure &e)
{
LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e.what();
}
}
}
//! Listen for connections on a TCP port
if (d_listen_connection == true)
{
d_port = d_port_ch0 + d_channel;
d_listen_connection = d_tcp_com.listen_tcp_connection(d_port, d_port_ch0);
}
}
void Gps_L1_Ca_Tcp_Connector_Tracking_cc::set_gnss_synchro(Gnss_Synchro *p_gnss_synchro)
{
d_acquisition_gnss_synchro = p_gnss_synchro;
}
int Gps_L1_Ca_Tcp_Connector_Tracking_cc::general_work(int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)),
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
// process vars
float carr_error = 0.0;
float code_error = 0.0;
float code_nco = 0.0;
Tcp_Packet_Data tcp_data;
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
Gnss_Synchro current_synchro_data = Gnss_Synchro();
// Block input data and block output stream pointers
const auto *in = reinterpret_cast<const gr_complex *>(input_items[0]);
auto **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]);
if (d_enable_tracking == true)
{
// Fill the acquisition data
current_synchro_data = *d_acquisition_gnss_synchro;
/*
* Receiver signal alignment
*/
if (d_pull_in == true)
{
int32_t samples_offset;
// 28/11/2011 ACQ to TRK transition BUG CORRECTION
float acq_trk_shif_correction_samples;
int32_t acq_to_trk_delay_samples;
acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
acq_trk_shif_correction_samples = d_next_prn_length_samples - std::fmod(static_cast<float>(acq_to_trk_delay_samples), static_cast<float>(d_next_prn_length_samples));
samples_offset = std::round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);
current_synchro_data.Tracking_sample_counter = d_sample_counter + static_cast<uint64_t>(samples_offset);
current_synchro_data.fs = d_fs_in;
*out[0] = current_synchro_data;
d_sample_counter_seconds = d_sample_counter_seconds + (static_cast<double>(samples_offset) / static_cast<double>(d_fs_in));
d_sample_counter = d_sample_counter + static_cast<uint64_t>(samples_offset); //count for the processed samples
d_pull_in = false;
consume_each(samples_offset); //shift input to perform alignment with local replica
return 1;
}
// Update the prn length based on code freq (variable) and
// sampling frequency (fixed)
// variable code PRN sample block size
d_current_prn_length_samples = d_next_prn_length_samples;
// ################# CARRIER WIPEOFF AND CORRELATORS ##############################
// perform carrier wipe-off and compute Early, Prompt and Late correlation
multicorrelator_cpu.set_input_output_vectors(d_correlator_outs, in);
double carr_phase_step_rad = GPS_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in);
double rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_hz / d_fs_in);
multicorrelator_cpu.Carrier_wipeoff_multicorrelator_resampler(d_rem_carr_phase_rad,
carr_phase_step_rad,
rem_code_phase_chips,
d_code_phase_step_chips,
d_current_prn_length_samples);
//! Variable used for control
d_control_id++;
//! Send and receive a TCP packet
boost::array<float, NUM_TX_VARIABLES_GPS_L1_CA> tx_variables_array = {{d_control_id,
(*d_Early).real(),
(*d_Early).imag(),
(*d_Late).real(),
(*d_Late).imag(),
(*d_Prompt).real(),
(*d_Prompt).imag(),
d_acq_carrier_doppler_hz,
1}};
d_tcp_com.send_receive_tcp_packet_gps_l1_ca(tx_variables_array, &tcp_data);
//! Recover the tracking data
code_error = tcp_data.proc_pack_code_error;
carr_error = tcp_data.proc_pack_carr_error;
// Modify carrier freq based on NCO command
d_carrier_doppler_hz = tcp_data.proc_pack_carrier_doppler_hz;
// Modify code freq based on NCO command
code_nco = 1 / (1 / GPS_L1_CA_CODE_RATE_HZ - code_error / GPS_L1_CA_CODE_LENGTH_CHIPS);
d_code_freq_hz = code_nco;
// Update the phasestep based on code freq (variable) and
// sampling frequency (fixed)
d_code_phase_step_chips = d_code_freq_hz / static_cast<float>(d_fs_in); //[chips]
// variable code PRN sample block size
double T_chip_seconds;
double T_prn_seconds;
double T_prn_samples;
double K_blk_samples;
T_chip_seconds = 1.0 / static_cast<double>(d_code_freq_hz);
T_prn_seconds = T_chip_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
d_rem_code_phase_samples = d_next_rem_code_phase_samples;
K_blk_samples = T_prn_samples + d_rem_code_phase_samples; //-code_error*(double)d_fs_in;
// Update the current PRN delay (code phase in samples)
double T_prn_true_seconds = GPS_L1_CA_CODE_LENGTH_CHIPS / GPS_L1_CA_CODE_RATE_HZ;
double T_prn_true_samples = T_prn_true_seconds * static_cast<double>(d_fs_in);
d_code_phase_samples = d_code_phase_samples + T_prn_samples - T_prn_true_samples;
if (d_code_phase_samples < 0)
{
d_code_phase_samples = T_prn_true_samples + d_code_phase_samples;
}
d_code_phase_samples = fmod(d_code_phase_samples, T_prn_true_samples);
d_next_prn_length_samples = round(K_blk_samples); //round to a discrete samples
d_next_rem_code_phase_samples = K_blk_samples - d_next_prn_length_samples; //rounding error
/*!
* \todo Improve the lock detection algorithm!
*/
// ####### CN0 ESTIMATION AND LOCK DETECTORS ######
if (d_cn0_estimation_counter < FLAGS_cn0_samples)
{
// fill buffer with prompt correlator output values
d_Prompt_buffer[d_cn0_estimation_counter] = *d_Prompt;
d_cn0_estimation_counter++;
}
else
{
d_cn0_estimation_counter = 0;
d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, FLAGS_cn0_samples, GPS_L1_CA_CODE_PERIOD);
d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, FLAGS_cn0_samples);
// ###### TRACKING UNLOCK NOTIFICATION #####
if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < FLAGS_cn0_min)
{
d_carrier_lock_fail_counter++;
}
else
{
if (d_carrier_lock_fail_counter > 0)
{
d_carrier_lock_fail_counter--;
}
}
if (d_carrier_lock_fail_counter > FLAGS_max_lock_fail)
{
std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl;
LOG(INFO) << "Loss of lock in channel " << d_channel << "!";
this->message_port_pub(pmt::mp("events"), pmt::from_long(3)); //3 -> loss of lock
d_carrier_lock_fail_counter = 0;
d_enable_tracking = false; // TODO: check if disabling tracking is consistent with the channel state machine
}
}
// ########### Output the tracking data to navigation and PVT ##########
current_synchro_data.Prompt_I = static_cast<double>((*d_Prompt).real());
current_synchro_data.Prompt_Q = static_cast<double>((*d_Prompt).imag());
//compute remnant code phase samples AFTER the Tracking timestamp
d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
current_synchro_data.Tracking_sample_counter = d_sample_counter + static_cast<uint64_t>(d_current_prn_length_samples);
current_synchro_data.Code_phase_samples = d_rem_code_phase_samples;
current_synchro_data.Carrier_phase_rads = static_cast<double>(d_acc_carrier_phase_rad);
current_synchro_data.Carrier_Doppler_hz = static_cast<double>(d_carrier_doppler_hz);
current_synchro_data.CN0_dB_hz = static_cast<double>(d_CN0_SNV_dB_Hz);
current_synchro_data.Flag_valid_symbol_output = true;
current_synchro_data.correlation_length_ms = 1;
}
else
{
*d_Early = gr_complex(0, 0);
*d_Prompt = gr_complex(0, 0);
*d_Late = gr_complex(0, 0);
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
current_synchro_data.Tracking_sample_counter = d_sample_counter + static_cast<uint64_t>(d_correlation_length_samples);
//! When tracking is disabled an array of 1's is sent to maintain the TCP connection
boost::array<float, NUM_TX_VARIABLES_GPS_L1_CA> tx_variables_array = {{1, 1, 1, 1, 1, 1, 1, 1, 0}};
d_tcp_com.send_receive_tcp_packet_gps_l1_ca(tx_variables_array, &tcp_data);
}
//assign the GNURadio block output data
current_synchro_data.System = {'G'};
std::string str_aux = "1C";
const char *str = str_aux.c_str(); // get a C style null terminated string
std::memcpy(static_cast<void *>(current_synchro_data.Signal), str, 3);
current_synchro_data.fs = d_fs_in;
*out[0] = current_synchro_data;
if (d_dump)
{
// MULTIPLEXED FILE RECORDING - Record results to file
float prompt_I;
float prompt_Q;
float tmp_E, tmp_P, tmp_L;
float tmp_VE = 0.0;
float tmp_VL = 0.0;
float tmp_float;
prompt_I = d_correlator_outs[1].real();
prompt_Q = d_correlator_outs[1].imag();
tmp_E = std::abs<float>(d_correlator_outs[0]);
tmp_P = std::abs<float>(d_correlator_outs[1]);
tmp_L = std::abs<float>(d_correlator_outs[2]);
try
{
// Dump correlators output
d_dump_file.write(reinterpret_cast<char *>(&tmp_VE), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&tmp_E), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&tmp_P), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&tmp_L), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&tmp_VL), sizeof(float));
// PROMPT I and Q (to analyze navigation symbols)
d_dump_file.write(reinterpret_cast<char *>(&prompt_I), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&prompt_Q), sizeof(float));
// PRN start sample stamp
d_dump_file.write(reinterpret_cast<char *>(&d_sample_counter), sizeof(uint64_t));
// accumulated carrier phase
tmp_float = d_acc_carrier_phase_rad;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
// carrier and code frequency
tmp_float = d_carrier_doppler_hz;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
tmp_float = d_code_freq_hz;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
// PLL commands
tmp_float = 0.0;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
tmp_float = carr_error;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
// DLL commands
tmp_float = 0.0;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
tmp_float = code_error;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
// CN0 and carrier lock test
tmp_float = d_CN0_SNV_dB_Hz;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
tmp_float = d_carrier_lock_test;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
// AUX vars (for debug purposes)
tmp_float = 0.0;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
auto tmp_double = static_cast<double>(d_sample_counter + d_correlation_length_samples);
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
// PRN
uint32_t prn_ = d_acquisition_gnss_synchro->PRN;
d_dump_file.write(reinterpret_cast<char *>(&prn_), sizeof(uint32_t));
}
catch (const std::ifstream::failure &e)
{
LOG(WARNING) << "Exception writing trk dump file " << e.what();
}
}
consume_each(d_current_prn_length_samples); // this is necessary in gr::block derivates
d_sample_counter_seconds = d_sample_counter_seconds + (static_cast<double>(d_current_prn_length_samples) / static_cast<double>(d_fs_in));
d_sample_counter += d_current_prn_length_samples; //count for the processed samples
if (d_enable_tracking)
{
return 1;
}
return 0;
}