gnss-sdr/src/algorithms/libs/gnss_sdr_fpga_sample_counte...

304 lines
12 KiB
C++

/*!
* \file gnss_sdr_fpga_sample_counter.cc
* \brief Simple block to report the current receiver time based on the output of the tracking or telemetry blocks
* \author Javier Arribas 2018. jarribas(at)cttc.es
*
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "gnss_sdr_fpga_sample_counter.h"
#include "gnss_synchro.h"
#include <glog/logging.h>
#include <gnuradio/io_signature.h>
#include <cmath>
#include <fcntl.h> // libraries used by the GIPO
#include <inttypes.h>
#include <iostream>
#include <string>
#include <sys/mman.h> // libraries used by the GIPO
#define PAGE_SIZE 0x10000 // default page size for the multicorrelator memory map
#define TEST_REG_SANITY_CHECK 0x55AA // value to check the presence of the test register (to detect the hw)
gnss_sdr_fpga_sample_counter::gnss_sdr_fpga_sample_counter(
double _fs,
int32_t _interval_ms) : gr::block("fpga_fpga_sample_counter",
gr::io_signature::make(0, 0, 0),
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
{
message_port_register_out(pmt::mp("fpga_sample_counter"));
set_max_noutput_items(1);
interval_ms = _interval_ms;
fs = _fs;
//printf("CREATOR fs = %f\n", fs);
//printf("CREATOR interval_ms = %" PRIu32 "\n", interval_ms);
samples_per_output = std::round(fs * static_cast<double>(interval_ms) / 1e3);
//printf("CREATOR samples_per_output = %" PRIu32 "\n", samples_per_output);
//todo: Load here the hardware counter register with this amount of samples. It should produce an
//interrupt every samples_per_output count.
//The hardware timer must keep always interrupting the PS. It must not wait for the interrupt to
//be served.
open_device();
sample_counter = 0ULL;
current_T_rx_ms = 0;
current_s = 0;
current_m = 0;
current_h = 0;
current_days = 0;
report_interval_ms = 1000; // default reporting 1 second
flag_enable_send_msg = false; // enable it for reporting time with asynchronous message
flag_m = false;
flag_h = false;
flag_days = false;
}
gnss_sdr_fpga_sample_counter_sptr gnss_sdr_make_fpga_sample_counter(double _fs, int32_t _interval_ms)
{
gnss_sdr_fpga_sample_counter_sptr fpga_sample_counter_(new gnss_sdr_fpga_sample_counter(_fs, _interval_ms));
return fpga_sample_counter_;
}
// Called by gnuradio to enable drivers, etc for i/o devices.
bool gnss_sdr_fpga_sample_counter::start()
{
//todo: place here the RE-INITIALIZATION routines. This function will be called by GNURadio at every start of the flowgraph.
// configure the number of samples per output in the FPGA and enable the interrupts
configure_samples_per_output(samples_per_output);
// return true if everything is ok.
return true;
}
// Called by GNURadio to disable drivers, etc for i/o devices.
bool gnss_sdr_fpga_sample_counter::stop()
{
//todo: place here the routines to stop the associated hardware (if needed).This function will be called by GNURadio at every stop of the flowgraph.
// return true if everything is ok.
close_device();
return true;
}
int gnss_sdr_fpga_sample_counter::general_work(int noutput_items __attribute__((unused)),
__attribute__((unused)) gr_vector_int &ninput_items,
__attribute__((unused)) gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
//todo: Call here a function that waits for an interrupt. Do not open a thread,
//it must be a simple call to a BLOCKING function.
// The function will return the actual absolute sample count of the internal counter of the timmer.
// store the sample count in class member sample_counter
// Possible problem: what happen if the PS is overloaded and gnuradio does not call this function
// with the sufficient rate to catch all the interrupts in the counter. To be evaluated later.
uint32_t counter = wait_for_interrupt_and_read_counter();
uint64_t samples_passed = 2 * static_cast<uint64_t>(samples_per_output) - static_cast<uint64_t>(counter); // ellapsed samples
//printf("============================================ interrupter : samples_passed = %" PRIu64 "\n", samples_passed);
// Note: at this moment the sample counter is implemented as a sample counter that decreases to zero and then it is automatically
// reloaded again and keeps counter. It is done in this way to minimize the logic in the FPGA and maximize the FPGA clock performance
// (it takes less resources and latency in the FPGA to compare a number against a fixed value like zero than to compare it to a programmable
// variable number).
sample_counter = sample_counter + samples_passed; //samples_per_output;
Gnss_Synchro *out = reinterpret_cast<Gnss_Synchro *>(output_items[0]);
out[0] = Gnss_Synchro();
out[0].Flag_valid_symbol_output = false;
out[0].Flag_valid_word = false;
out[0].Channel_ID = -1;
out[0].fs = fs;
if ((current_T_rx_ms % report_interval_ms) == 0)
{
//printf("time to print sample_counter = %" PRIu64 "\n", sample_counter);
//printf("time to print current Tx ms : %" PRIu64 "\n", current_T_rx_ms);
//printf("time to print report_interval_ms : %" PRIu32 "\n", report_interval_ms);
//printf("time to print %f\n", (current_T_rx_ms % report_interval_ms));
current_s++;
if ((current_s % 60) == 0)
{
current_s = 0;
current_m++;
flag_m = true;
if ((current_m % 60) == 0)
{
current_m = 0;
current_h++;
flag_h = true;
if ((current_h % 24) == 0)
{
current_h = 0;
current_days++;
flag_days = true;
}
}
}
if (flag_days)
{
std::string day;
if (current_days == 1)
{
day = " day ";
}
else
{
day = " days ";
}
std::cout << "Current receiver time: " << current_days << day << current_h << " h " << current_m << " min " << current_s << " s" << std::endl;
}
else
{
if (flag_h)
{
std::cout << "Current receiver time: " << current_h << " h " << current_m << " min " << current_s << " s" << std::endl;
}
else
{
if (flag_m)
{
std::cout << "Current receiver time: " << current_m << " min " << current_s << " s" << std::endl;
}
else
{
std::cout << "Current receiver time: " << current_s << " s" << std::endl;
}
}
}
if (flag_enable_send_msg)
{
message_port_pub(pmt::mp("receiver_time"), pmt::from_double(static_cast<double>(current_T_rx_ms) / 1000.0));
}
}
out[0].Tracking_sample_counter = sample_counter;
//current_T_rx_ms = (sample_counter * 1000) / samples_per_output;
current_T_rx_ms = interval_ms * (sample_counter) / samples_per_output;
return 1;
}
uint32_t gnss_sdr_fpga_sample_counter::test_register(uint32_t writeval)
{
uint32_t readval;
// write value to test register
map_base[3] = writeval;
// read value from test register
readval = map_base[3];
// return read value
return readval;
}
void gnss_sdr_fpga_sample_counter::configure_samples_per_output(uint32_t interval)
{
// note : the counter is a 48-bit value in the HW.
//printf("============================================ total counter - interrupted interval : %" PRIu32 "\n", interval);
//uint64_t temp_interval;
//temp_interval = (interval & static_cast<uint32_t>(0xFFFFFFFF));
//printf("LSW counter - interrupted interval : %" PRIu32 "\n", static_cast<uint32_t>(temp_interval));
//map_base[0] = static_cast<uint32_t>(temp_interval);
map_base[0] = interval - 1;
//temp_interval = (interval >> 32) & static_cast<uint32_t>(0xFFFFFFFF);
//printf("MSbits counter - interrupted interval : %" PRIu32 "\n", static_cast<uint32_t>(temp_interval));
//map_base[1] = static_cast<uint32_t>(temp_interval); // writing the most significant bits also enables the interrupts
}
void gnss_sdr_fpga_sample_counter::open_device()
{
// open communication with HW accelerator
if ((fd = open(device_name.c_str(), O_RDWR | O_SYNC)) == -1)
{
LOG(WARNING) << "Cannot open deviceio" << device_name;
std::cout << "Counter-Intr: cannot open deviceio" << device_name << std::endl;
}
map_base = reinterpret_cast<volatile uint32_t *>(mmap(NULL, PAGE_SIZE,
PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0));
if (map_base == reinterpret_cast<void *>(-1))
{
LOG(WARNING) << "Cannot map the FPGA acquisition module into user memory";
std::cout << "Counter-Intr: cannot map deviceio" << device_name << std::endl;
}
// sanity check : check test register
uint32_t writeval = TEST_REG_SANITY_CHECK;
uint32_t readval;
readval = gnss_sdr_fpga_sample_counter::test_register(writeval);
if (writeval != readval)
{
LOG(WARNING) << "Acquisition test register sanity check failed";
}
else
{
LOG(INFO) << "Acquisition test register sanity check success!";
//std::cout << "Acquisition test register sanity check success!" << std::endl;
}
}
void gnss_sdr_fpga_sample_counter::close_device()
{
//printf("=========================================== NOW closing device ...\n");
map_base[2] = 0; // disable the generation of the interrupt in the device
uint32_t *aux = const_cast<uint32_t *>(map_base);
if (munmap(static_cast<void *>(aux), PAGE_SIZE) == -1)
{
printf("Failed to unmap memory uio\n");
}
close(fd);
}
uint32_t gnss_sdr_fpga_sample_counter::wait_for_interrupt_and_read_counter()
{
int32_t irq_count;
ssize_t nb;
int32_t counter;
// enable interrupts
int32_t reenable = 1;
write(fd, reinterpret_cast<void *>(&reenable), sizeof(int32_t));
// wait for interrupt
//printf("============================================ interrupter : going to wait for interupt\n");
nb = read(fd, &irq_count, sizeof(irq_count));
//printf("============================================ interrupter : interrupt received\n");
//printf("interrupt received\n");
if (nb != sizeof(irq_count))
{
printf("acquisition module Read failed to retrieve 4 bytes!\n");
printf("acquisition module Interrupt number %d\n", irq_count);
}
// acknowledge the interrupt
map_base[1] = 0; // writing anything to reg 1 acknowledges the interrupt
// add number of passed samples or read the current counter value for more accuracy
counter = samples_per_output; //map_base[0];
return counter;
}