gnss-sdr/src/algorithms/observables/gnuradio_blocks/gps_l1_ca_observables_cc.cc

205 lines
8.8 KiB
C++

/*!
* \file gps_l1_ca_observables_cc.cc
* \brief Implementation of the pseudorange computation block for GPS L1 C/A
* \author Javier Arribas, 2011. jarribas(at)cttc.es
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2012 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "gps_l1_ca_observables_cc.h"
#include <iostream>
#include <sstream>
#include <vector>
#include <map>
#include <algorithm>
#include <bitset>
#include <cmath>
#include "control_message_factory.h"
#include <gnuradio/io_signature.h>
#include <glog/log_severity.h>
#include <glog/logging.h>
#include "gnss_synchro.h"
using google::LogMessage;
gps_l1_ca_observables_cc_sptr
gps_l1_ca_make_observables_cc(unsigned int nchannels, boost::shared_ptr<gr::msg_queue> queue, bool dump, std::string dump_filename, int output_rate_ms, bool flag_averaging)
{
return gps_l1_ca_observables_cc_sptr(new gps_l1_ca_observables_cc(nchannels, queue, dump, dump_filename, output_rate_ms, flag_averaging));
}
gps_l1_ca_observables_cc::gps_l1_ca_observables_cc(unsigned int nchannels, boost::shared_ptr<gr::msg_queue> queue, bool dump, std::string dump_filename, int output_rate_ms, bool flag_averaging) :
gr::block("gps_l1_ca_observables_cc", gr::io_signature::make(nchannels, nchannels, sizeof(Gnss_Synchro)),
gr::io_signature::make(nchannels, nchannels, sizeof(Gnss_Synchro)))
{
// initialize internal vars
d_queue = queue;
d_dump = dump;
d_nchannels = nchannels;
d_output_rate_ms = output_rate_ms;
d_dump_filename = dump_filename;
d_flag_averaging = flag_averaging;
// ############# ENABLE DATA FILE LOG #################
if (d_dump == true)
{
if (d_dump_file.is_open() == false)
{
try
{
d_dump_file.exceptions (std::ifstream::failbit | std::ifstream::badbit );
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
std::cout << "Observables dump enabled Log file: " << d_dump_filename.c_str() << std::endl;
}
catch (std::ifstream::failure e)
{
std::cout << "Exception opening observables dump file " << e.what() << std::endl;
}
}
}
}
gps_l1_ca_observables_cc::~gps_l1_ca_observables_cc()
{
d_dump_file.close();
}
bool pairCompare_gnss_synchro_Prn_delay_ms( std::pair<int,Gnss_Synchro> a, std::pair<int,Gnss_Synchro> b)
{
return (a.second.Prn_timestamp_ms) < (b.second.Prn_timestamp_ms);
}
bool pairCompare_gnss_synchro_d_TOW_at_current_symbol( std::pair<int,Gnss_Synchro> a, std::pair<int,Gnss_Synchro> b)
{
return (a.second.d_TOW_at_current_symbol) < (b.second.d_TOW_at_current_symbol);
}
int gps_l1_ca_observables_cc::general_work (int noutput_items, gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
Gnss_Synchro **in = (Gnss_Synchro **) &input_items[0]; //Get the input pointer
Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0]; //Get the output pointer
Gnss_Synchro current_gnss_synchro[d_nchannels];
std::map<int,Gnss_Synchro> current_gnss_synchro_map;
std::map<int,Gnss_Synchro>::iterator gnss_synchro_iter;
d_sample_counter++; //count for the processed samples
/*
* 1. Read the GNSS SYNCHRO objects from available channels
*/
for (unsigned int i=0; i<d_nchannels ; i++)
{
//Copy the telemetry decoder data to local copy
current_gnss_synchro[i] = in[i][0];
/*
* 1.2 Assume no valid pseudoranges
*/
current_gnss_synchro[i].Flag_valid_pseudorange = false;
current_gnss_synchro[i].Pseudorange_m = 0.0;
if (current_gnss_synchro[i].Flag_valid_word) //if this channel have valid word
{
//record the word structure in a map for pseudorange computation
current_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(current_gnss_synchro[i].Channel_ID, current_gnss_synchro[i]));
}
}
/*
* 2. Compute RAW pseudoranges using COMMON RECEPTION TIME algorithm. Use only the valid channels (channels that are tracking a satellite)
*/
if(current_gnss_synchro_map.size() > 0)
{
/*
* 2.1 Use CURRENT set of measurements and find the nearest satellite
* common RX time algorithm
*/
//;
// what is the most recent symbol TOW in the current set? -> this will be the reference symbol
gnss_synchro_iter = max_element(current_gnss_synchro_map.begin(), current_gnss_synchro_map.end(), pairCompare_gnss_synchro_d_TOW_at_current_symbol);
double d_TOW_reference = gnss_synchro_iter->second.d_TOW_at_current_symbol;
double d_ref_PRN_rx_time_ms = gnss_synchro_iter->second.Prn_timestamp_ms;
//int reference_channel= gnss_synchro_iter->second.Channel_ID;
// Now compute RX time differences due to the PRN alignement in the correlators
double traveltime_ms;
double pseudorange_m;
double delta_rx_time_ms;
for(gnss_synchro_iter = current_gnss_synchro_map.begin(); gnss_synchro_iter != current_gnss_synchro_map.end(); gnss_synchro_iter++)
{
// compute the required symbol history shift in order to match the reference symbol
delta_rx_time_ms = gnss_synchro_iter->second.Prn_timestamp_ms-d_ref_PRN_rx_time_ms;
//std::cout<<"delta_rx_time_ms="<<delta_rx_time_ms<<std::endl;
//compute the pseudorange
traveltime_ms = (d_TOW_reference-gnss_synchro_iter->second.d_TOW_at_current_symbol)*1000.0 + delta_rx_time_ms + GPS_STARTOFFSET_ms;
pseudorange_m = traveltime_ms * GPS_C_m_ms; // [m]
// update the pseudorange object
current_gnss_synchro[gnss_synchro_iter->second.Channel_ID] = gnss_synchro_iter->second;
current_gnss_synchro[gnss_synchro_iter->second.Channel_ID].Pseudorange_m = pseudorange_m;
current_gnss_synchro[gnss_synchro_iter->second.Channel_ID].Flag_valid_pseudorange = true;
current_gnss_synchro[gnss_synchro_iter->second.Channel_ID].d_TOW_at_current_symbol = round(d_TOW_reference*1000)/1000 + GPS_STARTOFFSET_ms/1000.0;
}
}
if(d_dump == true)
{
// MULTIPLEXED FILE RECORDING - Record results to file
try
{
double tmp_double;
for (unsigned int i=0; i<d_nchannels ; i++)
{
tmp_double = current_gnss_synchro[i].d_TOW_at_current_symbol;
d_dump_file.write((char*)&tmp_double, sizeof(double));
tmp_double = current_gnss_synchro[i].Prn_timestamp_ms;
d_dump_file.write((char*)&tmp_double, sizeof(double));
tmp_double = current_gnss_synchro[i].Pseudorange_m;
d_dump_file.write((char*)&tmp_double, sizeof(double));
tmp_double = 0;
d_dump_file.write((char*)&tmp_double, sizeof(double));
tmp_double = current_gnss_synchro[i].PRN;
d_dump_file.write((char*)&tmp_double, sizeof(double));
}
}
catch (std::ifstream::failure e)
{
std::cout << "Exception writing observables dump file " << e.what() << std::endl;
}
}
consume_each(1); //one by one
for (unsigned int i=0; i<d_nchannels ; i++)
{
*out[i] = current_gnss_synchro[i];
}
return 1; //Output the observables
}