gnss-sdr/src/algorithms/libs/nco_lib.h

90 lines
3.5 KiB
C++

/*!
* \file nco_lib.h
* \brief A set of Numeric Controlled Oscillator (NCO) functions to generate the carrier wipeoff signal,
* regardless of system used
*
* \author Javier Arribas 2012, jarribas(at)cttc.es
*
* Detailed description of the file here if needed.
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2012 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_NCO_LIB_CC_H_
#define GNSS_SDR_NCO_LIB_CC_H_
#include <gnuradio/fxpt.h>
#include <xmmintrin.h>
#include <sse_mathfun.h>
#include <cmath>
/*!
* \brief Implements a complex conjugate exponential vector in std::complex<float> *d_carr_sign
* containing int n_samples, with the starting phase float start_phase_rad and the pase step between vector elements
* float phase_step_rad. This function uses a SSE CORDIC implementation.
*
*/
void sse_nco(std::complex<float> *dest, int n_samples,float start_phase_rad, float phase_step_rad);
/*!
* \brief Implements a complex conjugate exponential vector in std::complex<float> *d_carr_sign
* containing int n_samples, with the starting phase float start_phase_rad and the pase step between vector elements
* float phase_step_rad. This function uses the GNU Radio fixed point CORDIC implementation.
*
*/
void fxp_nco(std::complex<float> *dest, int n_samples,float start_phase_rad, float phase_step_rad);
/*!
* \brief Implements a complex conjugate exponential vector in std::complex<float> *d_carr_sign
* containing int n_samples, with the starting phase float start_phase_rad and the pase step between vector elements
* float phase_step_rad. This function uses the stdlib sin() and cos() implementation.
*
*/
void std_nco(std::complex<float> *dest, int n_samples,float start_phase_rad, float phase_step_rad);
/*!
* \brief Implements a complex conjugate exponential vector in std::complex<float> *d_carr_sign
* containing int n_samples, with the starting phase float start_phase_rad and the pase step between vector elements
* float phase_step_rad. This function uses the GNU Radio fixed point CORDIC implementation.
*
*/
void fxp_nco_cpyref(std::complex<float> *dest, int n_samples,float start_phase_rad, float phase_step_rad);
/*!
* \brief Implements a complex conjugate exponential vector in two separated float arrays (In-phase and Quadrature)
* containing int n_samples, with the starting phase float start_phase_rad and the pase step between vector elements
* float phase_step_rad. This function uses the GNU Radio fixed point CORDIC implementation.
*
*/
void fxp_nco_IQ_split(float* I, float* Q, int n_samples,float start_phase_rad, float phase_step_rad);
#endif //NCO_LIB_CC_H