gnss-sdr/src/algorithms/libs/gnss_signal_processing.cc

216 lines
5.6 KiB
C++

/*!
* \file gnss_signal_processing.cc
* \brief This library gathers a few functions used by the algorithms of gnss-sdr,
* regardless of system used
* \author Luis Esteve, 2012. luis(at)epsilon-formacion.com
*
* Detailed description of the file here if needed.
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2012 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "gnss_signal_processing.h"
#include <gnuradio/fxpt.h> // fixed point sine and cosine
void complex_exp_gen(std::complex<float>* _dest, double _f, double _fs, unsigned int _samps)
{
//old
//double phase = 0;
//const double phase_step = (GPS_TWO_PI * _f) / _fs;
//new Fixed Point NCO (faster)
int phase_i = 0;
int phase_step_i;
float phase_step_f = (float)((GPS_TWO_PI * _f) / _fs);
phase_step_i = gr::fxpt::float_to_fixed(phase_step_f);
float sin_f,cos_f;
for(unsigned int i = 0; i < _samps; i++)
{
//old
//_dest[i] = std::complex<float>(cos(phase), sin(phase));
//phase += phase_step;
//new Fixed Point NCO (faster)
gr::fxpt::sincos(phase_i,&sin_f,&cos_f);
_dest[i] = std::complex<float>(cos_f, sin_f);
phase_i += phase_step_i;
}
}
void complex_exp_gen_conj(std::complex<float>* _dest, double _f, double _fs, unsigned int _samps)
{
//old
//double phase = 0;
//const double phase_step = (GPS_TWO_PI * _f) / _fs;
//new Fixed Point NCO (faster)
int phase_i = 0;
int phase_step_i;
float phase_step_f = (float)((GPS_TWO_PI * _f) / _fs);
phase_step_i = gr::fxpt::float_to_fixed(phase_step_f);
float sin_f,cos_f;
for(unsigned int i = 0; i < _samps; i++)
{
//old
//_dest[i] = std::complex<float>(cos(phase), sin(phase));
//phase += phase_step;
//new Fixed Point NCO (faster)
gr::fxpt::sincos(phase_i,&sin_f,&cos_f);
_dest[i] = std::complex<float>(cos_f, -sin_f);
phase_i += phase_step_i;
}
}
void hex_to_binary_converter(int * _dest, char _from)
{
switch(_from)
{
case '0':
*(_dest) = 1;
*(_dest+1) = 1;
*(_dest+2) = 1;
*(_dest+3) = 1;
break;
case '1':
*(_dest) = 1;
*(_dest+1) = 1;
*(_dest+2) = 1;
*(_dest+3) = -1;
break;
case '2':
*(_dest) = 1;
*(_dest+1) = 1;
*(_dest+2) = -1;
*(_dest+3) = 1;
break;
case '3':
*(_dest) = 1;
*(_dest+1) = 1;
*(_dest+2) = -1;
*(_dest+3) = -1;
break;
case '4':
*(_dest) = 1;
*(_dest+1) = -1;
*(_dest+2) = 1;
*(_dest+3) = 1;
break;
case '5':
*(_dest) = 1;
*(_dest+1) = -1;
*(_dest+2) = 1;
*(_dest+3) = -1;
break;
case '6':
*(_dest) = 1;
*(_dest+1) = -1;
*(_dest+2) = -1;
*(_dest+3) = 1;
break;
case '7':
*(_dest) = 1;
*(_dest+1) = -1;
*(_dest+2) = -1;
*(_dest+3) = -1;
break;
case '8':
*(_dest) = -1;
*(_dest+1) = 1;
*(_dest+2) = 1;
*(_dest+3) = 1;
break;
case '9':
*(_dest) = -1;
*(_dest+1) = 1;
*(_dest+2) = 1;
*(_dest+3) = -1;
break;
case 'A':
*(_dest) = -1;
*(_dest+1) = 1;
*(_dest+2) = -1;
*(_dest+3) = 1;
break;
case 'B':
*(_dest) = -1;
*(_dest+1) = 1;
*(_dest+2) = -1;
*(_dest+3) = -1;
break;
case 'C':
*(_dest) = -1;
*(_dest+1) = -1;
*(_dest+2) = 1;
*(_dest+3) = 1;
break;
case 'D':
*(_dest) = -1;
*(_dest+1) = -1;
*(_dest+2) = 1;
*(_dest+3) = -1;
break;
case 'E':
*(_dest) = -1;
*(_dest+1) = -1;
*(_dest+2) = -1;
*(_dest+3) = 1;
break;
case 'F':
*(_dest) = -1;
*(_dest+1) = -1;
*(_dest+2) = -1;
*(_dest+3) = -1;
break;
}
}
void resampler(std::complex<float>* _from, std::complex<float>* _dest, float _fs_in,
float _fs_out, unsigned int _length_in, unsigned int _length_out)
{
unsigned int _codeValueIndex;
//--- Find time constants --------------------------------------------------
const float _t_in = 1/_fs_in; // Incoming sampling period in sec
const float _t_out = 1/_fs_out; // Out sampling period in sec
for (unsigned int i=0; i<_length_out; i++)
{
//=== Digitizing =======================================================
//--- compute index array to read sampled values -------------------------
_codeValueIndex = ceil((_t_out * ((float)i + 1)) / _t_in) - 1;
if (i == _length_out - 1)
{
//--- Correct the last index (due to number rounding issues) -----------
_dest[i] = _from[_length_in - 1];
}
else
{
//if repeat the chip -> upsample by nearest neighborhood interpolation
_dest[i] = _from[_codeValueIndex];
}
}
}