gnss-sdr/src/algorithms/PVT/libs/gps_l1_ca_ls_pvt.cc

682 lines
26 KiB
C++

/*!
* \file gps_l1_ca_ls_pvt.cc
* \brief Implementation of a Least Squares Position, Velocity, and Time
* (PVT) solver, based on K.Borre's Matlab receiver.
* \author Javier Arribas, 2011. jarribas(at)cttc.es
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2012 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include <armadillo>
#include "gps_l1_ca_ls_pvt.h"
#include "GPS_L1_CA.h"
#include <glog/log_severity.h>
#include <glog/logging.h>
#include "boost/date_time/posix_time/posix_time.hpp"
#include "gnss_synchro.h"
using google::LogMessage;
gps_l1_ca_ls_pvt::gps_l1_ca_ls_pvt(int nchannels,std::string dump_filename, bool flag_dump_to_file)
{
// init empty ephemeris for all the available GNSS channels
d_nchannels = nchannels;
d_ephemeris = new Gps_Navigation_Message[nchannels];
d_dump_filename = dump_filename;
d_flag_dump_enabled = flag_dump_to_file;
d_averaging_depth = 0;
d_GPS_current_time = 0;
b_valid_position = false;
// ############# ENABLE DATA FILE LOG #################
if (d_flag_dump_enabled == true)
{
if (d_dump_file.is_open() == false)
{
try
{
d_dump_file.exceptions (std::ifstream::failbit | std::ifstream::badbit);
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
std::cout << "PVT lib dump enabled Log file: " << d_dump_filename.c_str() << std::endl;
}
catch (std::ifstream::failure e)
{
std::cout << "Exception opening PVT lib dump file " << e.what() << std::endl;
}
}
}
}
void gps_l1_ca_ls_pvt::set_averaging_depth(int depth)
{
d_averaging_depth = depth;
}
gps_l1_ca_ls_pvt::~gps_l1_ca_ls_pvt()
{
d_dump_file.close();
delete[] d_ephemeris;
}
arma::vec gps_l1_ca_ls_pvt::rotateSatellite(double traveltime, arma::vec X_sat)
{
/*
* Returns rotated satellite ECEF coordinates due to Earth
* rotation during signal travel time
*
* Inputs:
* travelTime - signal travel time
* X_sat - satellite's ECEF coordinates
*
* Returns:
* X_sat_rot - rotated satellite's coordinates (ECEF)
*/
//--- Find rotation angle --------------------------------------------------
double omegatau;
omegatau = OMEGA_EARTH_DOT * traveltime;
//--- Build a rotation matrix ----------------------------------------------
arma::mat R3 = arma::zeros(3,3);
R3(0, 0) = cos(omegatau);
R3(0, 1) = sin(omegatau);
R3(0, 2) = 0.0;
R3(1, 0) = -sin(omegatau);
R3(1, 1) = cos(omegatau);
R3(1, 2) = 0.0;
R3(2, 0) = 0.0;
R3(2, 1) = 0.0;
R3(2, 2) = 1;
//--- Do the rotation ------------------------------------------------------
arma::vec X_sat_rot;
X_sat_rot = R3 * X_sat;
return X_sat_rot;
}
arma::vec gps_l1_ca_ls_pvt::leastSquarePos(arma::mat satpos, arma::vec obs, arma::mat w)
{
/* Computes the Least Squares Solution.
* Inputs:
* satpos - Satellites positions in ECEF system: [X; Y; Z;]
* obs - Observations - the pseudorange measurements to each satellite
* w - weigths vector
*
* Returns:
* pos - receiver position and receiver clock error
* (in ECEF system: [X, Y, Z, dt])
*/
//=== Initialization =======================================================
int nmbOfIterations = 10; // TODO: include in config
int nmbOfSatellites;
nmbOfSatellites = satpos.n_cols; //Armadillo
arma::vec pos = "0.0 0.0 0.0 0.0";
arma::mat A;
arma::mat omc;
arma::mat az;
arma::mat el;
A = arma::zeros(nmbOfSatellites, 4);
omc = arma::zeros(nmbOfSatellites, 1);
az = arma::zeros(1, nmbOfSatellites);
el = arma::zeros(1, nmbOfSatellites);
for (int i = 0; i < nmbOfSatellites; i++)
{
for (int j = 0; j < 4; j++)
{
A(i, j) = 0.0; //Armadillo
}
omc(i, 0) = 0.0;
az(0, i) = 0.0;
}
el = az;
arma::mat X = satpos;
arma::vec Rot_X;
double rho2;
double traveltime;
double trop;
arma::mat mat_tmp;
arma::vec x;
//=== Iteratively find receiver position ===================================
for (int iter = 0; iter < nmbOfIterations; iter++)
{
for (int i = 0; i < nmbOfSatellites; i++)
{
if (iter == 0)
{
//--- Initialize variables at the first iteration --------------
Rot_X = X.col(i); //Armadillo
trop = 0.0;
}
else
{
//--- Update equations -----------------------------------------
rho2 = (X(0, i) - pos(0)) *
(X(0, i) - pos(0)) + (X(1, i) - pos(1)) *
(X(1, i) - pos(1)) + (X(2,i) - pos(2)) *
(X(2,i) - pos(2));
traveltime = sqrt(rho2) / GPS_C_m_s;
//--- Correct satellite position (do to earth rotation) --------
Rot_X = rotateSatellite(traveltime, X.col(i)); //armadillo
//--- Find DOA and range of satellites
topocent(&d_visible_satellites_Az[i], &d_visible_satellites_El[i],
&d_visible_satellites_Distance[i], pos.subvec(0,2), Rot_X - pos.subvec(0,2));
//[az(i), el(i), dist] = topocent(pos(1:3, :), Rot_X - pos(1:3, :));
}
//--- Apply the corrections ----------------------------------------
omc(i) = (obs(i) - norm(Rot_X - pos.subvec(0,2),2) - pos(3) - trop); // Armadillo
//--- Construct the A matrix ---------------------------------------
//Armadillo
A(i,0) = (-(Rot_X(0) - pos(0))) / obs(i);
A(i,1) = (-(Rot_X(1) - pos(1))) / obs(i);
A(i,2) = (-(Rot_X(2) - pos(2))) / obs(i);
A(i,3) = 1.0;
}
//--- Find position update ---------------------------------------------
x = arma::solve(w*A, w*omc); // Armadillo
//--- Apply position update --------------------------------------------
pos = pos + x;
if (arma::norm(x,2)<1e-4)
{
break; // exit the loop because we assume that the LS algorithm has converged (err < 0.1 cm)
}
}
try
{
//-- compute the Dilution Of Precision values
arma::mat Q;
Q = arma::inv(arma::htrans(A)*A);
d_GDOP = sqrt(arma::trace(Q)); // Geometric DOP
d_PDOP = sqrt(Q(0,0) + Q(1,1) + Q(2,2)); // PDOP
d_HDOP = sqrt(Q(0,0) + Q(1,1)); // HDOP
d_VDOP = sqrt(Q(2,2)); // VDOP
d_TDOP = sqrt(Q(3,3)); // TDOP
}
catch(std::exception e)
{
d_GDOP = -1;
d_PDOP = -1;
d_HDOP = -1;
d_VDOP = -1;
d_TDOP = -1;
}
return pos;
}
bool gps_l1_ca_ls_pvt::get_PVT(std::map<int,Gnss_Synchro> gnss_pseudoranges_map, double GPS_current_time, bool flag_averaging)
{
std::map<int,Gnss_Synchro>::iterator gnss_pseudoranges_iter;
std::map<int,Gps_Ephemeris>::iterator gps_ephemeris_iter;
int valid_pseudoranges = gnss_pseudoranges_map.size();
arma::mat W = arma::eye(valid_pseudoranges,valid_pseudoranges); //channels weights matrix
arma::vec obs = arma::zeros(valid_pseudoranges); // pseudoranges observation vector
arma::mat satpos = arma::zeros(3,valid_pseudoranges); //satellite positions matrix
int GPS_week = 0;
double utc = 0;
double SV_clock_drift_s = 0;
double SV_relativistic_clock_corr_s = 0;
double TX_time_corrected_s;
double SV_clock_bias_s = 0;
d_flag_averaging = flag_averaging;
// ********************************************************************************
// ****** PREPARE THE LEAST SQUARES DATA (SV POSITIONS MATRIX AND OBS VECTORS) ****
// ********************************************************************************
int valid_obs = 0; //valid observations counter
int obs_counter = 0;
for(gnss_pseudoranges_iter = gnss_pseudoranges_map.begin();
gnss_pseudoranges_iter != gnss_pseudoranges_map.end();
gnss_pseudoranges_iter++)
{
// 1- find the ephemeris for the current SV observation. The SV PRN ID is the map key
gps_ephemeris_iter = gps_ephemeris_map.find(gnss_pseudoranges_iter->first);
if (gps_ephemeris_iter != gps_ephemeris_map.end())
{
/*!
* \todo Place here the satellite CN0 (power level, or weight factor)
*/
W(obs_counter, obs_counter) = 1;
// COMMON RX TIME PVT ALGORITHM MODIFICATION (Like RINEX files)
// first estimate of transmit time
double Rx_time = GPS_current_time;
double Tx_time = Rx_time - gnss_pseudoranges_iter->second.Pseudorange_m/GPS_C_m_s;
// 2- compute the clock drift using the clock model (broadcast) for this SV
SV_clock_drift_s = gps_ephemeris_iter->second.sv_clock_drift(Tx_time);
// 3- compute the relativistic clock drift using the clock model (broadcast) for this SV
SV_relativistic_clock_corr_s = gps_ephemeris_iter->second.sv_clock_relativistic_term(Tx_time);
// 4- compute the current ECEF position for this SV using corrected TX time
SV_clock_bias_s = SV_clock_drift_s + SV_relativistic_clock_corr_s - gps_ephemeris_iter->second.d_TGD;
TX_time_corrected_s = Tx_time - SV_clock_bias_s;
gps_ephemeris_iter->second.satellitePosition(TX_time_corrected_s);
satpos(0,obs_counter) = gps_ephemeris_iter->second.d_satpos_X;
satpos(1,obs_counter) = gps_ephemeris_iter->second.d_satpos_Y;
satpos(2,obs_counter) = gps_ephemeris_iter->second.d_satpos_Z;
// 5- fill the observations vector with the corrected pseudorranges
obs(obs_counter) = gnss_pseudoranges_iter->second.Pseudorange_m + SV_clock_bias_s*GPS_C_m_s;
d_visible_satellites_IDs[valid_obs] = gps_ephemeris_iter->second.i_satellite_PRN;
d_visible_satellites_CN0_dB[valid_obs] = gnss_pseudoranges_iter->second.CN0_dB_hz;
valid_obs++;
// SV ECEF DEBUG OUTPUT
DLOG(INFO) << "(new)ECEF satellite SV ID=" << gps_ephemeris_iter->second.i_satellite_PRN
<< " X=" << gps_ephemeris_iter->second.d_satpos_X
<< " [m] Y=" << gps_ephemeris_iter->second.d_satpos_Y
<< " [m] Z=" << gps_ephemeris_iter->second.d_satpos_Z
<< " [m] PR_obs=" << obs(obs_counter) << " [m]" << std::endl;
// compute the UTC time for this SV (just to print the asociated UTC timestamp)
GPS_week = gps_ephemeris_iter->second.i_GPS_week;
utc = gps_utc_model.utc_time(TX_time_corrected_s, GPS_week);
}
else // the ephemeris are not available for this SV
{
// no valid pseudorange for the current SV
W(obs_counter, obs_counter) = 0; // SV de-activated
obs(obs_counter) = 1; // to avoid algorithm problems (divide by zero)
DLOG(INFO) << "No ephemeris data for SV "<< gnss_pseudoranges_iter->first << std::endl;
}
obs_counter++;
}
// ********************************************************************************
// ****** SOLVE LEAST SQUARES******************************************************
// ********************************************************************************
d_valid_observations = valid_obs;
DLOG(INFO) << "(new)PVT: valid observations=" << valid_obs << std::endl;
if (valid_obs >= 4)
{
arma::vec mypos;
DLOG(INFO) << "satpos=" << satpos << std::endl;
DLOG(INFO) << "obs="<< obs << std::endl;
DLOG(INFO) << "W=" << W <<std::endl;
mypos = leastSquarePos(satpos, obs, W);
DLOG(INFO) << "(new)Position at TOW=" << GPS_current_time << " in ECEF (X,Y,Z) = " << mypos << std::endl;
gps_l1_ca_ls_pvt::cart2geo(mypos(0), mypos(1), mypos(2), 4);
// Compute UTC time and print PVT solution
double secondsperweek = 604800.0; // number of seconds in one week (7*24*60*60)
boost::posix_time::time_duration t = boost::posix_time::seconds(utc + secondsperweek*(double)GPS_week);
// 22 August 1999 last GPS time roll over
boost::posix_time::ptime p_time(boost::gregorian::date(1999, 8, 22), t);
d_position_UTC_time = p_time;
DLOG(INFO) << "(new)Position at " << boost::posix_time::to_simple_string(p_time)
<< " is Lat = " << d_latitude_d << " [deg], Long = " << d_longitude_d
<< " [deg], Height= " << d_height_m << " [m]" << std::endl;
// ######## LOG FILE #########
if(d_flag_dump_enabled == true)
{
// MULTIPLEXED FILE RECORDING - Record results to file
try
{
double tmp_double;
// PVT GPS time
tmp_double = GPS_current_time;
d_dump_file.write((char*)&tmp_double, sizeof(double));
// ECEF User Position East [m]
tmp_double = mypos(0);
d_dump_file.write((char*)&tmp_double, sizeof(double));
// ECEF User Position North [m]
tmp_double = mypos(1);
d_dump_file.write((char*)&tmp_double, sizeof(double));
// ECEF User Position Up [m]
tmp_double = mypos(2);
d_dump_file.write((char*)&tmp_double, sizeof(double));
// User clock offset [s]
tmp_double = mypos(3);
d_dump_file.write((char*)&tmp_double, sizeof(double));
// GEO user position Latitude [deg]
tmp_double = d_latitude_d;
d_dump_file.write((char*)&tmp_double, sizeof(double));
// GEO user position Longitude [deg]
tmp_double = d_longitude_d;
d_dump_file.write((char*)&tmp_double, sizeof(double));
// GEO user position Height [m]
tmp_double = d_height_m;
d_dump_file.write((char*)&tmp_double, sizeof(double));
}
catch (std::ifstream::failure e)
{
std::cout << "Exception writing PVT LS dump file "<< e.what() << std::endl;
}
}
// MOVING AVERAGE PVT
if (flag_averaging == true)
{
if (d_hist_longitude_d.size() == (unsigned int)d_averaging_depth)
{
// Pop oldest value
d_hist_longitude_d.pop_back();
d_hist_latitude_d.pop_back();
d_hist_height_m.pop_back();
// Push new values
d_hist_longitude_d.push_front(d_longitude_d);
d_hist_latitude_d.push_front(d_latitude_d);
d_hist_height_m.push_front(d_height_m);
d_avg_latitude_d = 0;
d_avg_longitude_d = 0;
d_avg_height_m = 0;
for (unsigned int i=0; i<d_hist_longitude_d.size(); i++)
{
d_avg_latitude_d = d_avg_latitude_d + d_hist_latitude_d.at(i);
d_avg_longitude_d = d_avg_longitude_d + d_hist_longitude_d.at(i);
d_avg_height_m = d_avg_height_m + d_hist_height_m.at(i);
}
d_avg_latitude_d = d_avg_latitude_d / (double)d_averaging_depth;
d_avg_longitude_d = d_avg_longitude_d / (double)d_averaging_depth;
d_avg_height_m = d_avg_height_m / (double)d_averaging_depth;
b_valid_position = true;
return true; //indicates that the returned position is valid
}
else
{
//int current_depth=d_hist_longitude_d.size();
// Push new values
d_hist_longitude_d.push_front(d_longitude_d);
d_hist_latitude_d.push_front(d_latitude_d);
d_hist_height_m.push_front(d_height_m);
d_avg_latitude_d = d_latitude_d;
d_avg_longitude_d = d_longitude_d;
d_avg_height_m = d_height_m;
b_valid_position = false;
return false; //indicates that the returned position is not valid yet
}
}
else
{
b_valid_position = true;
return true; //indicates that the returned position is valid
}
}
else
{
b_valid_position = false;
return false;
}
}
void gps_l1_ca_ls_pvt::cart2geo(double X, double Y, double Z, int elipsoid_selection)
{
/* Conversion of Cartesian coordinates (X,Y,Z) to geographical
coordinates (latitude, longitude, h) on a selected reference ellipsoid.
Choices of Reference Ellipsoid for Geographical Coordinates
0. International Ellipsoid 1924
1. International Ellipsoid 1967
2. World Geodetic System 1972
3. Geodetic Reference System 1980
4. World Geodetic System 1984
*/
const double a[5] = {6378388, 6378160, 6378135, 6378137, 6378137};
const double f[5] = {1/297, 1/298.247, 1/298.26, 1/298.257222101, 1/298.257223563};
double lambda = atan2(Y,X);
double ex2 = (2 - f[elipsoid_selection]) * f[elipsoid_selection] / ((1 - f[elipsoid_selection])*(1 -f[elipsoid_selection]));
double c = a[elipsoid_selection] * sqrt(1+ex2);
double phi = atan(Z / ((sqrt(X*X + Y*Y)*(1 - (2 - f[elipsoid_selection])) * f[elipsoid_selection])));
double h = 0.1;
double oldh = 0;
double N;
int iterations = 0;
do
{
oldh = h;
N = c / sqrt(1 + ex2 * (cos(phi) * cos(phi)));
phi = atan(Z / ((sqrt(X*X + Y*Y) * (1 - (2 -f[elipsoid_selection]) * f[elipsoid_selection] *N / (N + h) ))));
h = sqrt(X*X + Y*Y) / cos(phi) - N;
iterations = iterations + 1;
if (iterations > 100)
{
std::cout << "Failed to approximate h with desired precision. h-oldh= " << h - oldh << std::endl;
break;
}
}
while (abs(h - oldh) > 1.0e-12);
d_latitude_d = phi * 180.0 / GPS_PI;
d_longitude_d = lambda * 180 / GPS_PI;
d_height_m = h;
}
void gps_l1_ca_ls_pvt::togeod(double *dphi, double *dlambda, double *h, double a, double finv, double X, double Y, double Z)
{
/* Subroutine to calculate geodetic coordinates latitude, longitude,
height given Cartesian coordinates X,Y,Z, and reference ellipsoid
values semi-major axis (a) and the inverse of flattening (finv).
The output units of angular quantities will be in decimal degrees
(15.5 degrees not 15 deg 30 min). The output units of h will be the
same as the units of X,Y,Z,a.
Inputs:
a - semi-major axis of the reference ellipsoid
finv - inverse of flattening of the reference ellipsoid
X,Y,Z - Cartesian coordinates
Outputs:
dphi - latitude
dlambda - longitude
h - height above reference ellipsoid
Based in a Matlab function by Kai Borre
*/
*h = 0;
double tolsq = 1.e-10; // tolerance to accept convergence
int maxit = 10; // max number of iterations
double rtd = 180/GPS_PI;
// compute square of eccentricity
double esq;
if (finv < 1.0E-20)
{
esq = 0;
}
else
{
esq = (2 - 1/finv) / finv;
}
// first guess
double P = sqrt(X*X + Y*Y); // P is distance from spin axis
//direct calculation of longitude
if (P > 1.0E-20)
{
*dlambda = atan2(Y,X) * rtd;
}
else
{
*dlambda = 0;
}
// correct longitude bound
if (*dlambda < 0)
{
*dlambda = *dlambda + 360.0;
}
double r = sqrt(P*P + Z*Z); // r is distance from origin (0,0,0)
double sinphi;
if (r > 1.0E-20)
{
sinphi = Z/r;
}
else
{
sinphi = 0;
}
*dphi = asin(sinphi);
// initial value of height = distance from origin minus
// approximate distance from origin to surface of ellipsoid
if (r < 1.0E-20)
{
*h = 0;
return;
}
*h = r - a*(1-sinphi*sinphi/finv);
// iterate
double cosphi;
double N_phi;
double dP;
double dZ;
double oneesq = 1 - esq;
for (int i=0; i<maxit; i++)
{
sinphi = sin(*dphi);
cosphi = cos(*dphi);
// compute radius of curvature in prime vertical direction
N_phi = a / sqrt(1 - esq*sinphi*sinphi);
// compute residuals in P and Z
dP = P - (N_phi + (*h)) * cosphi;
dZ = Z - (N_phi*oneesq + (*h)) * sinphi;
// update height and latitude
*h = *h + (sinphi*dZ + cosphi*dP);
*dphi = *dphi + (cosphi*dZ - sinphi*dP)/(N_phi + (*h));
// test for convergence
if ((dP*dP + dZ*dZ) < tolsq)
{
break;
}
if (i == (maxit-1))
{
DLOG(INFO) << "The computation of geodetic coordinates did not converge";
}
}
*dphi = (*dphi) * rtd;
}
void gps_l1_ca_ls_pvt::topocent(double *Az, double *El, double *D, arma::vec x, arma::vec dx)
{
/* Transformation of vector dx into topocentric coordinate
system with origin at x
Inputs:
x - vector origin coordinates (in ECEF system [X; Y; Z;])
dx - vector ([dX; dY; dZ;]).
Outputs:
D - vector length. Units like the input
Az - azimuth from north positive clockwise, degrees
El - elevation angle, degrees
Based on a Matlab function by Kai Borre
*/
double lambda;
double phi;
double h;
double dtr = GPS_PI/180.0;
double a = 6378137.0; // semi-major axis of the reference ellipsoid WGS-84
double finv = 298.257223563; // inverse of flattening of the reference ellipsoid WGS-84
// Transform x into geodetic coordinates
togeod(&phi, &lambda, &h, a, finv, x(0), x(1), x(2));
double cl = cos(lambda * dtr);
double sl = sin(lambda * dtr);
double cb = cos(phi * dtr);
double sb = sin(phi * dtr);
arma::mat F = arma::zeros(3,3);
F(0,0) = -sl;
F(0,1) = -sb*cl;
F(0,2) = cb*cl;
F(1,0) = cl;
F(1,1) = -sb*sl;
F(1,2) = cb*sl;
F(2,0) = 0;
F(2,1) = cb;
F(2,2) = sb;
arma::vec local_vector;
local_vector = arma::htrans(F) * dx;
double E = local_vector(0);
double N = local_vector(1);
double U = local_vector(2);
double hor_dis;
hor_dis = sqrt(E*E + N*N);
if (hor_dis < 1.0E-20)
{
*Az = 0;
*El = 90;
}
else
{
*Az = atan2(E, N)/dtr;
*El = atan2(U, hor_dis)/dtr;
}
if (*Az < 0)
{
*Az = *Az + 360.0;
}
*D = sqrt(dx(0)*dx(0) + dx(1)*dx(1) + dx(2)*dx(2));
}