1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-01-05 15:00:33 +00:00
gnss-sdr/src/algorithms/libs/glonass_l1_signal_processing.cc
Carles Fernandez 4d0d263280
Make the software package compliant with the REUSE Specification v3.0 (see https://reuse.software/spec/)
Update license headers to SPDX format (see https://spdx.org/)
Add license to all files
Add CI job in GitHub Actions to ensure compliance
2020-02-08 01:20:02 +01:00

141 lines
4.6 KiB
C++

/*!
* \file glonass_l1_signal_processing.cc
* \brief This class implements various functions for GLONASS L1 CA signals
* \author Javier Arribas, 2011. jarribas(at)cttc.es
*
* Detailed description of the file here if needed.
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* SPDX-License-Identifier: GPL-3.0-or-later
*
* -------------------------------------------------------------------------
*/
#include "glonass_l1_signal_processing.h"
#include <array>
#include <bitset>
auto auxCeil = [](float x) { return static_cast<int32_t>(static_cast<int64_t>((x) + 1)); };
void glonass_l1_ca_code_gen_complex(gsl::span<std::complex<float>> _dest, uint32_t _chip_shift)
{
const uint32_t _code_length = 511;
std::bitset<_code_length> G1{};
auto G1_register = std::bitset<9>{}.set(); // All true
bool feedback1;
bool aux;
uint32_t delay;
uint32_t lcv;
uint32_t lcv2;
/* Generate G1 Register */
for (lcv = 0; lcv < _code_length; lcv++)
{
G1[lcv] = G1_register[2];
feedback1 = G1_register[4] xor G1_register[0];
for (lcv2 = 0; lcv2 < 8; lcv2++)
{
G1_register[lcv2] = G1_register[lcv2 + 1];
}
G1_register[8] = feedback1;
}
/* Generate PRN from G1 Register */
for (lcv = 0; lcv < _code_length; lcv++)
{
aux = G1[lcv];
if (aux == true)
{
_dest[lcv] = std::complex<float>(1, 0);
}
else
{
_dest[lcv] = std::complex<float>(-1, 0);
}
}
/* Set the delay */
delay = _code_length;
delay += _chip_shift;
delay %= _code_length;
/* Generate PRN from G1 and G2 Registers */
for (lcv = 0; lcv < _code_length; lcv++)
{
aux = G1[(lcv + _chip_shift) % _code_length];
if (aux == true)
{
_dest[lcv] = std::complex<float>(1, 0);
}
else
{
_dest[lcv] = std::complex<float>(-1, 0);
}
delay++;
delay %= _code_length;
}
}
/*
* Generates complex GLONASS L1 C/A code for the desired SV ID and sampled to specific sampling frequency
*/
void glonass_l1_ca_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, int32_t _fs, uint32_t _chip_shift)
{
// This function is based on the GNU software GPS for MATLAB in the Kay Borre book
std::array<std::complex<float>, 511> _code{};
int32_t _samplesPerCode;
int32_t _codeValueIndex;
float _ts;
float _tc;
float aux;
const int32_t _codeFreqBasis = 511000; // Hz
const int32_t _codeLength = 511;
// --- Find number of samples per spreading code ---------------------------
_samplesPerCode = static_cast<int32_t>(static_cast<double>(_fs) / (static_cast<double>(_codeFreqBasis) / static_cast<double>(_codeLength)));
// --- Find time constants -------------------------------------------------
_ts = 1.0 / static_cast<float>(_fs); // Sampling period in sec
_tc = 1.0 / static_cast<float>(_codeFreqBasis); // C/A chip period in sec
glonass_l1_ca_code_gen_complex(_code, _chip_shift); // generate C/A code 1 sample per chip
for (int32_t i = 0; i < _samplesPerCode; i++)
{
// === Digitizing ==================================================
// --- Make index array to read C/A code values --------------------
// The length of the index array depends on the sampling frequency -
// number of samples per millisecond (because one C/A code period is one
// millisecond).
aux = (_ts * (i + 1)) / _tc;
_codeValueIndex = auxCeil(aux) - 1;
// --- Make the digitized version of the C/A code ------------------
// The "upsampled" code is made by selecting values form the CA code
// chip array (caCode) for the time instances of each sample.
if (i == _samplesPerCode - 1)
{
// --- Correct the last index (due to number rounding issues) -----------
_dest[i] = _code[_codeLength - 1];
}
else
{
_dest[i] = _code[_codeValueIndex]; // repeat the chip -> upsample
}
}
}