1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-06-26 15:03:14 +00:00
gnss-sdr/src/algorithms/libs/galileo_e1_signal_processing.cc
2019-09-09 19:08:15 +02:00

271 lines
11 KiB
C++

/*!
* \file galileo_e1_signal_processing.cc
* \brief This library implements various functions for Galileo E1 signals
* \author Luis Esteve, 2012. luis(at)epsilon-formacion.com
*
* Detailed description of the file here if needed.
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "galileo_e1_signal_processing.h"
#include "Galileo_E1.h"
#include "gnss_signal_processing.h"
#include <memory>
#include <string>
#include <utility>
#include <vector>
void galileo_e1_code_gen_int(gsl::span<int> _dest, const std::array<char, 3>& _Signal, int32_t _prn)
{
std::string _galileo_signal = _Signal.data();
int32_t prn = _prn - 1;
int32_t index = 0;
// A simple error check
if ((_prn < 1) || (_prn > 50))
{
return;
}
if (_galileo_signal.rfind("1B") != std::string::npos && _galileo_signal.length() >= 2)
{
for (char i : GALILEO_E1_B_PRIMARY_CODE[prn])
{
hex_to_binary_converter(_dest.subspan(index, 4), i);
index += 4;
}
}
else if (_galileo_signal.rfind("1C") != std::string::npos && _galileo_signal.length() >= 2)
{
for (char i : GALILEO_E1_C_PRIMARY_CODE[prn])
{
hex_to_binary_converter(_dest.subspan(index, 4), i);
index += 4;
}
}
}
void galileo_e1_sinboc_11_gen_int(gsl::span<int> _dest, gsl::span<const int> _prn)
{
const uint32_t _length_in = GALILEO_E1_B_CODE_LENGTH_CHIPS;
auto _period = static_cast<uint32_t>(_dest.size() / _length_in);
for (uint32_t i = 0; i < _length_in; i++)
{
for (uint32_t j = 0; j < (_period / 2); j++)
{
_dest[i * _period + j] = _prn[i];
}
for (uint32_t j = (_period / 2); j < _period; j++)
{
_dest[i * _period + j] = -_prn[i];
}
}
}
void galileo_e1_sinboc_61_gen_int(gsl::span<int> _dest, gsl::span<const int> _prn)
{
const uint32_t _length_in = GALILEO_E1_B_CODE_LENGTH_CHIPS;
auto _period = static_cast<uint32_t>(_dest.size() / _length_in);
for (uint32_t i = 0; i < _length_in; i++)
{
for (uint32_t j = 0; j < _period; j += 2)
{
_dest[i * _period + j] = _prn[i];
}
for (uint32_t j = 1; j < _period; j += 2)
{
_dest[i * _period + j] = -_prn[i];
}
}
}
void galileo_e1_code_gen_sinboc11_float(gsl::span<float> _dest, const std::array<char, 3>& _Signal, uint32_t _prn)
{
std::string _galileo_signal = _Signal.data();
const auto _codeLength = static_cast<uint32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS);
std::array<int32_t, 4092> primary_code_E1_chips{};
galileo_e1_code_gen_int(primary_code_E1_chips, _Signal, _prn); // generate Galileo E1 code, 1 sample per chip
for (uint32_t i = 0; i < _codeLength; i++)
{
_dest[2 * i] = static_cast<float>(primary_code_E1_chips[i]);
_dest[2 * i + 1] = -_dest[2 * i];
}
}
void galileo_e1_gen_float(gsl::span<float> _dest, gsl::span<int> _prn, const std::array<char, 3>& _Signal)
{
std::string _galileo_signal = _Signal.data();
const uint32_t _codeLength = 12 * GALILEO_E1_B_CODE_LENGTH_CHIPS;
const float alpha = sqrt(10.0 / 11.0);
const float beta = sqrt(1.0 / 11.0);
std::array<int32_t, 12 * 4092> sinboc_11{};
std::array<int32_t, 12 * 4092> sinboc_61{};
gsl::span<int32_t> sinboc_11_(sinboc_11.data(), _codeLength);
gsl::span<int32_t> sinboc_61_(sinboc_61.data(), _codeLength);
galileo_e1_sinboc_11_gen_int(sinboc_11_, _prn); // generate sinboc(1,1) 12 samples per chip
galileo_e1_sinboc_61_gen_int(sinboc_61_, _prn); // generate sinboc(6,1) 12 samples per chip
if (_galileo_signal.rfind("1B") != std::string::npos && _galileo_signal.length() >= 2)
{
for (uint32_t i = 0; i < _codeLength; i++)
{
_dest[i] = alpha * static_cast<float>(sinboc_11[i]) +
beta * static_cast<float>(sinboc_61[i]);
}
}
else if (_galileo_signal.rfind("1C") != std::string::npos && _galileo_signal.length() >= 2)
{
for (uint32_t i = 0; i < _codeLength; i++)
{
_dest[i] = alpha * static_cast<float>(sinboc_11[i]) -
beta * static_cast<float>(sinboc_61[i]);
}
}
}
void galileo_e1_code_gen_float_sampled(gsl::span<float> _dest, const std::array<char, 3>& _Signal,
bool _cboc, uint32_t _prn, int32_t _fs, uint32_t _chip_shift,
bool _secondary_flag)
{
// This function is based on the GNU software GPS for MATLAB in Kay Borre's book
std::string _galileo_signal = _Signal.data();
uint32_t _samplesPerCode;
const int32_t _codeFreqBasis = GALILEO_E1_CODE_CHIP_RATE_CPS; // Hz
std::vector<int32_t> primary_code_E1_chips(static_cast<int32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS));
_samplesPerCode = static_cast<uint32_t>(static_cast<double>(_fs) / (static_cast<double>(_codeFreqBasis) / GALILEO_E1_B_CODE_LENGTH_CHIPS));
const int32_t _samplesPerChip = (_cboc == true) ? 12 : 2;
const uint32_t delay = ((static_cast<int32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS) - _chip_shift) % static_cast<int32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS)) * _samplesPerCode / GALILEO_E1_B_CODE_LENGTH_CHIPS;
galileo_e1_code_gen_int(primary_code_E1_chips, _Signal, _prn); // generate Galileo E1 code, 1 sample per chip
const uint32_t _codeLength = _samplesPerChip * GALILEO_E1_B_CODE_LENGTH_CHIPS;
std::unique_ptr<float> _signal_E1{new float[_codeLength]};
gsl::span<float> _signal_E1_span(_signal_E1, _codeLength);
if (_cboc == true)
{
galileo_e1_gen_float(_signal_E1_span, primary_code_E1_chips, _Signal); // generate cboc 12 samples per chip
}
else
{
std::vector<int32_t> _signal_E1_int(static_cast<int32_t>(_codeLength));
galileo_e1_sinboc_11_gen_int(_signal_E1_int, primary_code_E1_chips); // generate sinboc(1,1) 2 samples per chip
for (uint32_t ii = 0; ii < _codeLength; ++ii)
{
_signal_E1_span[ii] = static_cast<float>(_signal_E1_int[ii]);
}
}
if (_fs != _samplesPerChip * _codeFreqBasis)
{
std::unique_ptr<float> _resampled_signal{new float[_samplesPerCode]};
resampler(gsl::span<float>(_signal_E1, _codeLength), gsl::span<float>(_resampled_signal, _samplesPerCode), _samplesPerChip * _codeFreqBasis, _fs); // resamples code to fs
_signal_E1 = std::move(_resampled_signal);
}
uint32_t size_signal_E1 = _codeLength;
if (_fs != _samplesPerChip * _codeFreqBasis)
{
size_signal_E1 = _samplesPerCode;
}
gsl::span<float> _signal_E1_span_aux(_signal_E1, size_signal_E1);
if (_galileo_signal.rfind("1C") != std::string::npos && _galileo_signal.length() >= 2 && _secondary_flag)
{
std::unique_ptr<float> _signal_E1C_secondary{new float[static_cast<int32_t>(GALILEO_E1_C_SECONDARY_CODE_LENGTH) * _samplesPerCode]};
gsl::span<float> _signal_E1C_secondary_span(_signal_E1C_secondary, static_cast<int32_t>(GALILEO_E1_C_SECONDARY_CODE_LENGTH) * _samplesPerCode);
for (uint32_t i = 0; i < static_cast<uint32_t>(GALILEO_E1_C_SECONDARY_CODE_LENGTH); i++)
{
for (unsigned k = 0; k < _samplesPerCode; k++)
{
_signal_E1C_secondary_span[i * _samplesPerCode + k] = _signal_E1_span_aux[k] * (GALILEO_E1_C_SECONDARY_CODE[i] == '0' ? 1.0F : -1.0F);
}
}
_samplesPerCode *= static_cast<int32_t>(GALILEO_E1_C_SECONDARY_CODE_LENGTH);
_signal_E1 = std::move(_signal_E1C_secondary);
}
if (_galileo_signal.rfind("1C") != std::string::npos && _galileo_signal.length() >= 2 && _secondary_flag)
{
size_signal_E1 = static_cast<int32_t>(GALILEO_E1_C_SECONDARY_CODE_LENGTH) * _samplesPerCode;
}
gsl::span<float> _signal_E1_span_aux2(_signal_E1, size_signal_E1);
for (uint32_t i = 0; i < _samplesPerCode; i++)
{
_dest[(i + delay) % _samplesPerCode] = _signal_E1_span_aux2[i];
}
}
void galileo_e1_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, const std::array<char, 3>& _Signal,
bool _cboc, uint32_t _prn, int32_t _fs, uint32_t _chip_shift,
bool _secondary_flag)
{
std::string _galileo_signal = _Signal.data();
const int32_t _codeFreqBasis = GALILEO_E1_CODE_CHIP_RATE_CPS; // Hz
auto _samplesPerCode = static_cast<uint32_t>(static_cast<double>(_fs) /
(static_cast<double>(_codeFreqBasis) / GALILEO_E1_B_CODE_LENGTH_CHIPS));
if (_galileo_signal.rfind("1C") != std::string::npos && _galileo_signal.length() >= 2 && _secondary_flag)
{
_samplesPerCode *= static_cast<int32_t>(GALILEO_E1_C_SECONDARY_CODE_LENGTH);
}
std::vector<float> real_code(_samplesPerCode);
galileo_e1_code_gen_float_sampled(real_code, _Signal, _cboc, _prn, _fs, _chip_shift, _secondary_flag);
for (uint32_t ii = 0; ii < _samplesPerCode; ++ii)
{
_dest[ii] = std::complex<float>(real_code[ii], 0.0F);
}
}
void galileo_e1_code_gen_float_sampled(gsl::span<float> _dest, const std::array<char, 3>& _Signal,
bool _cboc, uint32_t _prn, int32_t _fs, uint32_t _chip_shift)
{
galileo_e1_code_gen_float_sampled(_dest, _Signal, _cboc, _prn, _fs, _chip_shift, false);
}
void galileo_e1_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, const std::array<char, 3>& _Signal,
bool _cboc, uint32_t _prn, int32_t _fs, uint32_t _chip_shift)
{
galileo_e1_code_gen_complex_sampled(_dest, _Signal, _cboc, _prn, _fs, _chip_shift, false);
}