gnss-sdr/src/algorithms/acquisition/gnuradio_blocks/pcps_acquisition_fine_doppl...

702 lines
27 KiB
C++

/*!
* \file pcps_acquisition_fine_doppler_cc.cc
* \brief This class implements a Parallel Code Phase Search Acquisition with multi-dwells and fine Doppler estimation
* \authors <ul>
* <li> Javier Arribas, 2013. jarribas(at)cttc.es
* </ul>
*
* -----------------------------------------------------------------------------
*
* Copyright (C) 2010-2020 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* SPDX-License-Identifier: GPL-3.0-or-later
*
* -----------------------------------------------------------------------------
*/
#include "pcps_acquisition_fine_doppler_cc.h"
#include "GPS_L1_CA.h" // for GPS_L1_CA_CHIP_PERIOD_S
#include "gnss_sdr_create_directory.h"
#include "gnss_sdr_make_unique.h"
#include "gps_sdr_signal_processing.h"
#if HAS_STD_FILESYSTEM
#if HAS_STD_FILESYSTEM_EXPERIMENTAL
#include <experimental/filesystem>
#else
#include <filesystem>
#endif
#else
#include <boost/filesystem/path.hpp>
#endif
#include <glog/logging.h>
#include <gnuradio/io_signature.h>
#include <matio.h>
#include <volk/volk.h>
#include <algorithm> // std::rotate, std::fill_n
#include <array>
#include <sstream>
#include <vector>
#if HAS_STD_FILESYSTEM
#if HAS_STD_FILESYSTEM_EXPERIMENTAL
namespace fs = std::experimental::filesystem;
#else
namespace fs = std::filesystem;
#endif
#else
namespace fs = boost::filesystem;
#endif
pcps_acquisition_fine_doppler_cc_sptr pcps_make_acquisition_fine_doppler_cc(const Acq_Conf &conf_)
{
return pcps_acquisition_fine_doppler_cc_sptr(
new pcps_acquisition_fine_doppler_cc(conf_));
}
pcps_acquisition_fine_doppler_cc::pcps_acquisition_fine_doppler_cc(const Acq_Conf &conf_)
: gr::block("pcps_acquisition_fine_doppler_cc",
gr::io_signature::make(1, 1, sizeof(gr_complex)),
gr::io_signature::make(0, 0, sizeof(gr_complex)))
{
this->message_port_register_out(pmt::mp("events"));
acq_parameters = conf_;
d_sample_counter = 0ULL; // SAMPLE COUNTER
d_active = false;
d_fs_in = conf_.fs_in;
d_samples_per_ms = static_cast<int>(conf_.samples_per_ms);
d_config_doppler_max = conf_.doppler_max;
d_fft_size = d_samples_per_ms;
// HS Acquisition
d_max_dwells = conf_.max_dwells;
d_gnuradio_forecast_samples = d_fft_size;
d_state = 0;
d_fft_codes.reserve(d_fft_size);
d_magnitude.reserve(d_fft_size);
d_10_ms_buffer.reserve(50 * d_samples_per_ms);
// Direct FFT
d_fft_if = std::make_unique<gr::fft::fft_complex>(d_fft_size, true);
// Inverse FFT
d_ifft = std::make_unique<gr::fft::fft_complex>(d_fft_size, false);
// For dumping samples into a file
d_dump = conf_.dump;
d_dump_filename = conf_.dump_filename;
if (d_dump)
{
std::string dump_path;
// Get path
if (d_dump_filename.find_last_of('/') != std::string::npos)
{
std::string dump_filename_ = d_dump_filename.substr(d_dump_filename.find_last_of('/') + 1);
dump_path = d_dump_filename.substr(0, d_dump_filename.find_last_of('/'));
d_dump_filename = dump_filename_;
}
else
{
dump_path = std::string(".");
}
if (d_dump_filename.empty())
{
d_dump_filename = "acquisition";
}
// remove extension if any
if (d_dump_filename.substr(1).find_last_of('.') != std::string::npos)
{
d_dump_filename = d_dump_filename.substr(0, d_dump_filename.find_last_of('.'));
}
d_dump_filename = dump_path + fs::path::preferred_separator + d_dump_filename;
// create directory
if (!gnss_sdr_create_directory(dump_path))
{
std::cerr << "GNSS-SDR cannot create dump file for the Acquisition block. Wrong permissions?\n";
d_dump = false;
}
}
d_n_samples_in_buffer = 0;
d_threshold = 0;
d_num_doppler_points = 0;
d_doppler_step = 0;
d_gnss_synchro = nullptr;
d_code_phase = 0;
d_doppler_freq = 0;
d_test_statistics = 0;
d_well_count = 0;
d_channel = 0;
d_positive_acq = 0;
d_dump_number = 0;
d_dump_channel = 0; // this implementation can only produce dumps in channel 0
// todo: migrate config parameters to the unified acquisition config class
}
// Finds next power of two
// for n. If n itself is a
// power of two then returns n
unsigned int pcps_acquisition_fine_doppler_cc::nextPowerOf2(unsigned int n)
{
n--;
n |= n >> 1U;
n |= n >> 2U;
n |= n >> 4U;
n |= n >> 8U;
n |= n >> 16U;
n++;
return n;
}
void pcps_acquisition_fine_doppler_cc::set_doppler_step(unsigned int doppler_step)
{
d_doppler_step = doppler_step;
// Create the search grid array
d_num_doppler_points = floor(std::abs(2 * d_config_doppler_max) / d_doppler_step);
d_grid_data = volk_gnsssdr::vector<volk_gnsssdr::vector<float>>(d_num_doppler_points, volk_gnsssdr::vector<float>(d_fft_size));
if (d_dump)
{
grid_ = arma::fmat(d_fft_size, d_num_doppler_points, arma::fill::zeros);
}
update_carrier_wipeoff();
}
void pcps_acquisition_fine_doppler_cc::set_local_code(std::complex<float> *code)
{
memcpy(d_fft_if->get_inbuf(), code, sizeof(gr_complex) * d_fft_size);
d_fft_if->execute(); // We need the FFT of local code
// Conjugate the local code
volk_32fc_conjugate_32fc(d_fft_codes.data(), d_fft_if->get_outbuf(), d_fft_size);
}
void pcps_acquisition_fine_doppler_cc::init()
{
d_gnss_synchro->Flag_valid_acquisition = false;
d_gnss_synchro->Flag_valid_symbol_output = false;
d_gnss_synchro->Flag_valid_pseudorange = false;
d_gnss_synchro->Flag_valid_word = false;
d_gnss_synchro->Acq_doppler_step = 0U;
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0ULL;
d_state = 0;
}
void pcps_acquisition_fine_doppler_cc::forecast(int noutput_items,
gr_vector_int &ninput_items_required)
{
if (noutput_items != 0)
{
ninput_items_required[0] = d_gnuradio_forecast_samples; // set the required available samples in each call
}
}
void pcps_acquisition_fine_doppler_cc::reset_grid()
{
d_well_count = 0;
for (int i = 0; i < d_num_doppler_points; i++)
{
// todo: use memset here
for (int j = 0; j < d_fft_size; j++)
{
d_grid_data[i][j] = 0.0;
}
}
}
void pcps_acquisition_fine_doppler_cc::update_carrier_wipeoff()
{
// create the carrier Doppler wipeoff signals
int doppler_hz;
float phase_step_rad;
d_grid_doppler_wipeoffs = volk_gnsssdr::vector<volk_gnsssdr::vector<std::complex<float>>>(d_num_doppler_points, volk_gnsssdr::vector<std::complex<float>>(d_fft_size));
for (int doppler_index = 0; doppler_index < d_num_doppler_points; doppler_index++)
{
doppler_hz = static_cast<int>(d_doppler_step) * doppler_index - d_config_doppler_max;
// doppler search steps
// compute the carrier doppler wipe-off signal and store it
phase_step_rad = static_cast<float>(TWO_PI) * static_cast<float>(doppler_hz) / static_cast<float>(d_fs_in);
float _phase[1];
_phase[0] = 0;
volk_gnsssdr_s32f_sincos_32fc(d_grid_doppler_wipeoffs[doppler_index].data(), -phase_step_rad, _phase, d_fft_size);
}
}
float pcps_acquisition_fine_doppler_cc::compute_CAF()
{
float firstPeak = 0.0;
int index_doppler = 0;
uint32_t tmp_intex_t = 0;
uint32_t index_time = 0;
// Look for correlation peaks in the results ==============================
// Find the highest peak and compare it to the second highest peak
// The second peak is chosen not closer than 1 chip to the highest peak
// --- Find the correlation peak and the carrier frequency --------------
for (int i = 0; i < d_num_doppler_points; i++)
{
volk_gnsssdr_32f_index_max_32u(&tmp_intex_t, d_grid_data[i].data(), d_fft_size);
if (d_grid_data[i][tmp_intex_t] > firstPeak)
{
firstPeak = d_grid_data[i][tmp_intex_t];
index_doppler = i;
index_time = tmp_intex_t;
}
// Record results to file if required
if (d_dump and d_channel == d_dump_channel)
{
memcpy(grid_.colptr(i), d_grid_data[i].data(), sizeof(float) * d_fft_size);
}
}
// -- - Find 1 chip wide code phase exclude range around the peak
uint32_t samplesPerChip = ceil(GPS_L1_CA_CHIP_PERIOD_S * static_cast<float>(this->d_fs_in));
int32_t excludeRangeIndex1 = index_time - samplesPerChip;
int32_t excludeRangeIndex2 = index_time + samplesPerChip;
// -- - Correct code phase exclude range if the range includes array boundaries
if (excludeRangeIndex1 < 0)
{
excludeRangeIndex1 = d_fft_size + excludeRangeIndex1;
}
else if (excludeRangeIndex2 >= static_cast<int>(d_fft_size))
{
excludeRangeIndex2 = excludeRangeIndex2 - d_fft_size;
}
int32_t idx = excludeRangeIndex1;
do
{
d_grid_data[index_doppler][idx] = 0.0;
idx++;
if (idx == static_cast<int>(d_fft_size))
{
idx = 0;
}
}
while (idx != excludeRangeIndex2);
// --- Find the second highest correlation peak in the same freq. bin ---
volk_gnsssdr_32f_index_max_32u(&tmp_intex_t, d_grid_data[index_doppler].data(), d_fft_size);
float secondPeak = d_grid_data[index_doppler][tmp_intex_t];
// 5- Compute the test statistics and compare to the threshold
d_test_statistics = firstPeak / secondPeak;
// 4- record the maximum peak and the associated synchronization parameters
d_gnss_synchro->Acq_delay_samples = static_cast<double>(index_time);
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(index_doppler * d_doppler_step - d_config_doppler_max);
d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter;
d_gnss_synchro->Acq_doppler_step = d_doppler_step;
return d_test_statistics;
}
float pcps_acquisition_fine_doppler_cc::estimate_input_power(gr_vector_const_void_star &input_items)
{
const auto *in = reinterpret_cast<const gr_complex *>(input_items[0]); // Get the input samples pointer
// Compute the input signal power estimation
float power = 0;
volk_32fc_magnitude_squared_32f(d_magnitude.data(), in, d_fft_size);
volk_32f_accumulator_s32f(&power, d_magnitude.data(), d_fft_size);
power /= static_cast<float>(d_fft_size);
return power;
}
int pcps_acquisition_fine_doppler_cc::compute_and_accumulate_grid(gr_vector_const_void_star &input_items)
{
// initialize acquisition algorithm
const auto *in = reinterpret_cast<const gr_complex *>(input_items[0]); // Get the input samples pointer
DLOG(INFO) << "Channel: " << d_channel
<< " , doing acquisition of satellite: " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN
<< " ,sample stamp: " << d_sample_counter << ", threshold: "
<< d_threshold << ", doppler_max: " << d_config_doppler_max
<< ", doppler_step: " << d_doppler_step;
// 2- Doppler frequency search loop
volk_gnsssdr::vector<float> p_tmp_vector(d_fft_size);
for (int doppler_index = 0; doppler_index < d_num_doppler_points; doppler_index++)
{
// doppler search steps
// Perform the carrier wipe-off
volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), in, d_grid_doppler_wipeoffs[doppler_index].data(), d_fft_size);
// 3- Perform the FFT-based convolution (parallel time search)
// Compute the FFT of the carrier wiped--off incoming signal
d_fft_if->execute();
// Multiply carrier wiped--off, Fourier transformed incoming signal
// with the local FFT'd code reference using SIMD operations with VOLK library
volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(), d_fft_if->get_outbuf(), d_fft_codes.data(), d_fft_size);
// compute the inverse FFT
d_ifft->execute();
// save the grid matrix delay file
volk_32fc_magnitude_squared_32f(p_tmp_vector.data(), d_ifft->get_outbuf(), d_fft_size);
// accumulate grid values
volk_32f_x2_add_32f(d_grid_data[doppler_index].data(), d_grid_data[doppler_index].data(), p_tmp_vector.data(), d_fft_size);
}
return d_fft_size;
// debug
// std::cout << "iff=[";
// for (int n = 0; n < d_fft_size; n++)
// {
// std::cout << std::real(d_ifft->get_outbuf()[n]) << "+" << std::imag(d_ifft->get_outbuf()[n]) << "i,";
// }
// std::cout << "]\n";
// getchar();
}
int pcps_acquisition_fine_doppler_cc::estimate_Doppler()
{
// Direct FFT
int zero_padding_factor = 8;
int prn_replicas = 10;
int signal_samples = prn_replicas * d_fft_size;
// int fft_size_extended = nextPowerOf2(signal_samples * zero_padding_factor);
int fft_size_extended = signal_samples * zero_padding_factor;
auto fft_operator = std::make_unique<gr::fft::fft_complex>(fft_size_extended, true);
// zero padding the entire vector
std::fill_n(fft_operator->get_inbuf(), fft_size_extended, gr_complex(0.0, 0.0));
// 1. generate local code aligned with the acquisition code phase estimation
volk_gnsssdr::vector<gr_complex> code_replica(signal_samples);
gps_l1_ca_code_gen_complex_sampled(code_replica, d_gnss_synchro->PRN, d_fs_in, 0);
int shift_index = static_cast<int>(d_gnss_synchro->Acq_delay_samples);
// Rotate to align the local code replica using acquisition time delay estimation
if (shift_index != 0)
{
std::rotate(code_replica.data(), code_replica.data() + (d_fft_size - shift_index), code_replica.data() + d_fft_size - 1);
}
for (int n = 0; n < prn_replicas - 1; n++)
{
memcpy(&code_replica[(n + 1) * d_fft_size], code_replica.data(), d_fft_size * sizeof(gr_complex));
}
// 2. Perform code wipe-off
volk_32fc_x2_multiply_32fc(fft_operator->get_inbuf(), d_10_ms_buffer.data(), code_replica.data(), signal_samples);
// 3. Perform the FFT (zero padded!)
fft_operator->execute();
// 4. Compute the magnitude and find the maximum
volk_gnsssdr::vector<float> p_tmp_vector(fft_size_extended);
volk_32fc_magnitude_squared_32f(p_tmp_vector.data(), fft_operator->get_outbuf(), fft_size_extended);
uint32_t tmp_index_freq = 0;
volk_gnsssdr_32f_index_max_32u(&tmp_index_freq, p_tmp_vector.data(), fft_size_extended);
// case even
int counter = 0;
volk_gnsssdr::vector<float> fftFreqBins(fft_size_extended);
for (int k = 0; k < (fft_size_extended / 2); k++)
{
fftFreqBins[counter] = ((static_cast<float>(d_fs_in) / 2.0) * static_cast<float>(k)) / (static_cast<float>(fft_size_extended) / 2.0);
counter++;
}
for (int k = fft_size_extended / 2; k > 0; k--)
{
fftFreqBins[counter] = ((-static_cast<float>(d_fs_in) / 2.0) * static_cast<float>(k)) / (static_cast<float>(fft_size_extended) / 2.0);
counter++;
}
// 5. Update the Doppler estimation in Hz
if (std::abs(fftFreqBins[tmp_index_freq] - d_gnss_synchro->Acq_doppler_hz) < 1000)
{
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(fftFreqBins[tmp_index_freq]);
// std::cout << "FFT maximum present at " << fftFreqBins[tmp_index_freq] << " [Hz]\n";
}
else
{
DLOG(INFO) << "Abs(Grid Doppler - FFT Doppler)=" << std::abs(fftFreqBins[tmp_index_freq] - d_gnss_synchro->Acq_doppler_hz);
DLOG(INFO) << "Error estimating fine frequency Doppler";
}
return d_fft_size;
}
// Called by gnuradio to enable drivers, etc for i/o devices.
bool pcps_acquisition_fine_doppler_cc::start()
{
d_sample_counter = 0ULL;
return true;
}
void pcps_acquisition_fine_doppler_cc::set_state(int state)
{
// gr::thread::scoped_lock lock(d_setlock); // require mutex with work function called by the scheduler
d_state = state;
if (d_state == 1)
{
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0ULL;
d_gnss_synchro->Acq_doppler_step = 0U;
d_well_count = 0;
d_test_statistics = 0.0;
d_active = true;
reset_grid();
}
else if (d_state == 0)
{
}
else
{
LOG(ERROR) << "State can only be set to 0 or 1";
}
}
int pcps_acquisition_fine_doppler_cc::general_work(int noutput_items,
gr_vector_int &ninput_items __attribute__((unused)), gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items __attribute__((unused)))
{
/*!
* TODO: High sensitivity acquisition algorithm:
* State Machine:
* S0. StandBy. If d_active==1 -> S1
* S1. ComputeGrid. Perform the FFT acqusition doppler and delay grid.
* Accumulate the search grid matrix (#doppler_bins x #fft_size)
* Compare maximum to threshold and decide positive or negative
* If T>=gamma -> S4 else
* If d_well_count<max_dwells -> S2
* else -> S5.
* S4. Positive_Acq: Send message and stop acq -> S0
* S5. Negative_Acq: Send message and stop acq -> S0
*/
int samples_remaining;
switch (d_state)
{
case 0: // S0. StandBy
if (d_active == true)
{
reset_grid();
d_n_samples_in_buffer = 0;
d_state = 1;
}
if (!acq_parameters.blocking_on_standby)
{
d_sample_counter += static_cast<uint64_t>(d_fft_size); // sample counter
consume_each(d_fft_size);
}
break;
case 1: // S1. ComputeGrid
compute_and_accumulate_grid(input_items);
memcpy(&d_10_ms_buffer[d_n_samples_in_buffer], reinterpret_cast<const gr_complex *>(input_items[0]), d_fft_size * sizeof(gr_complex));
d_n_samples_in_buffer += d_fft_size;
d_well_count++;
if (d_well_count >= d_max_dwells)
{
d_state = 2;
}
d_sample_counter += static_cast<uint64_t>(d_fft_size); // sample counter
consume_each(d_fft_size);
break;
case 2: // Compute test statistics and decide
d_test_statistics = compute_CAF();
if (d_test_statistics > d_threshold)
{
d_state = 3; // perform fine doppler estimation
}
else
{
d_state = 5; // negative acquisition
d_n_samples_in_buffer = 0;
}
break;
case 3: // Fine doppler estimation
samples_remaining = 10 * d_samples_per_ms - d_n_samples_in_buffer;
if (samples_remaining > noutput_items)
{
memcpy(&d_10_ms_buffer[d_n_samples_in_buffer], reinterpret_cast<const gr_complex *>(input_items[0]), noutput_items * sizeof(gr_complex));
d_n_samples_in_buffer += noutput_items;
d_sample_counter += static_cast<uint64_t>(noutput_items); // sample counter
consume_each(noutput_items);
}
else
{
if (samples_remaining > 0)
{
memcpy(&d_10_ms_buffer[d_n_samples_in_buffer], reinterpret_cast<const gr_complex *>(input_items[0]), samples_remaining * sizeof(gr_complex));
d_sample_counter += static_cast<uint64_t>(samples_remaining); // sample counter
consume_each(samples_remaining);
}
estimate_Doppler(); // disabled in repo
d_n_samples_in_buffer = 0;
d_state = 4;
}
break;
case 4: // Positive_Acq
DLOG(INFO) << "positive acquisition";
DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN;
DLOG(INFO) << "sample_stamp " << d_sample_counter;
DLOG(INFO) << "test statistics value " << d_test_statistics;
DLOG(INFO) << "test statistics threshold " << d_threshold;
DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples;
DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz;
d_positive_acq = 1;
d_active = false;
// Record results to file if required
if (d_dump and d_channel == d_dump_channel)
{
dump_results(d_fft_size);
}
// Send message to channel port //0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL
this->message_port_pub(pmt::mp("events"), pmt::from_long(1));
d_state = 0;
if (!acq_parameters.blocking_on_standby)
{
d_sample_counter += static_cast<uint64_t>(noutput_items); // sample counter
consume_each(noutput_items);
}
break;
case 5: // Negative_Acq
DLOG(INFO) << "negative acquisition";
DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN;
DLOG(INFO) << "sample_stamp " << d_sample_counter;
DLOG(INFO) << "test statistics value " << d_test_statistics;
DLOG(INFO) << "test statistics threshold " << d_threshold;
DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples;
DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz;
d_positive_acq = 0;
d_active = false;
// Record results to file if required
if (d_dump and d_channel == d_dump_channel)
{
dump_results(d_fft_size);
}
// Send message to channel port //0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL
this->message_port_pub(pmt::mp("events"), pmt::from_long(2));
d_state = 0;
if (!acq_parameters.blocking_on_standby)
{
d_sample_counter += static_cast<uint64_t>(noutput_items); // sample counter
consume_each(noutput_items);
}
break;
default:
d_state = 0;
if (!acq_parameters.blocking_on_standby)
{
d_sample_counter += static_cast<uint64_t>(noutput_items); // sample counter
consume_each(noutput_items);
}
break;
}
return 0;
}
void pcps_acquisition_fine_doppler_cc::dump_results(int effective_fft_size)
{
d_dump_number++;
std::string filename = d_dump_filename;
filename.append("_");
filename.append(1, d_gnss_synchro->System);
filename.append("_");
filename.append(1, d_gnss_synchro->Signal[0]);
filename.append(1, d_gnss_synchro->Signal[1]);
filename.append("_ch_");
filename.append(std::to_string(d_channel));
filename.append("_");
filename.append(std::to_string(d_dump_number));
filename.append("_sat_");
filename.append(std::to_string(d_gnss_synchro->PRN));
filename.append(".mat");
mat_t *matfp = Mat_CreateVer(filename.c_str(), nullptr, MAT_FT_MAT73);
if (matfp == nullptr)
{
std::cout << "Unable to create or open Acquisition dump file\n";
d_dump = false;
}
else
{
std::array<size_t, 2> dims{static_cast<size_t>(effective_fft_size), static_cast<size_t>(d_num_doppler_points)};
matvar_t *matvar = Mat_VarCreate("acq_grid", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims.data(), grid_.memptr(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
dims[0] = static_cast<size_t>(1);
dims[1] = static_cast<size_t>(1);
matvar = Mat_VarCreate("doppler_max", MAT_C_INT32, MAT_T_INT32, 1, dims.data(), &d_config_doppler_max, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("doppler_step", MAT_C_INT32, MAT_T_INT32, 1, dims.data(), &d_doppler_step, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("d_positive_acq", MAT_C_INT32, MAT_T_INT32, 1, dims.data(), &d_positive_acq, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
auto aux = static_cast<float>(d_gnss_synchro->Acq_doppler_hz);
matvar = Mat_VarCreate("acq_doppler_hz", MAT_C_SINGLE, MAT_T_SINGLE, 1, dims.data(), &aux, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
aux = static_cast<float>(d_gnss_synchro->Acq_delay_samples);
matvar = Mat_VarCreate("acq_delay_samples", MAT_C_SINGLE, MAT_T_SINGLE, 1, dims.data(), &aux, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("test_statistic", MAT_C_SINGLE, MAT_T_SINGLE, 1, dims.data(), &d_test_statistics, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("threshold", MAT_C_SINGLE, MAT_T_SINGLE, 1, dims.data(), &d_threshold, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
aux = 0.0;
matvar = Mat_VarCreate("input_power", MAT_C_SINGLE, MAT_T_SINGLE, 1, dims.data(), &aux, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("sample_counter", MAT_C_UINT64, MAT_T_UINT64, 1, dims.data(), &d_sample_counter, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("PRN", MAT_C_UINT32, MAT_T_UINT32, 1, dims.data(), &d_gnss_synchro->PRN, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
Mat_Close(matfp);
}
}