1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-06-13 16:56:52 +00:00
gnss-sdr/src/algorithms/PVT/gnuradio_blocks/gps_l1_ca_pvt_cc.cc
Carles Fernandez 4438ffe916 Code cleaning
2017-01-28 15:31:04 +01:00

506 lines
24 KiB
C++

/*!
* \file gps_l1_ca_pvt_cc.cc
* \brief Implementation of a Position Velocity and Time computation block for GPS L1 C/A
* \author Javier Arribas, 2011. jarribas(at)cttc.es
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "gps_l1_ca_pvt_cc.h"
#include <algorithm>
#include <iostream>
#include <map>
#include <utility>
#include <boost/math/common_factor_rt.hpp>
#include <boost/date_time/posix_time/posix_time.hpp>
#include <gnuradio/gr_complex.h>
#include <gnuradio/io_signature.h>
#include <glog/logging.h>
#include "concurrent_map.h"
#include "sbas_telemetry_data.h"
#include "sbas_ionospheric_correction.h"
using google::LogMessage;
gps_l1_ca_pvt_cc_sptr
gps_l1_ca_make_pvt_cc(unsigned int nchannels,
bool dump, std::string dump_filename,
int averaging_depth,
bool flag_averaging,
int output_rate_ms,
int display_rate_ms,
bool flag_nmea_tty_port,
std::string nmea_dump_filename,
std::string nmea_dump_devname,
bool flag_rtcm_server,
bool flag_rtcm_tty_port,
unsigned short rtcm_tcp_port,
unsigned short rtcm_station_id,
std::map<int,int> rtcm_msg_rate_ms,
std::string rtcm_dump_devname,
int rinex_version)
{
return gps_l1_ca_pvt_cc_sptr(new gps_l1_ca_pvt_cc(nchannels,
dump,
dump_filename,
averaging_depth,
flag_averaging,
output_rate_ms,
display_rate_ms,
flag_nmea_tty_port,
nmea_dump_filename,
nmea_dump_devname,
flag_rtcm_server,
flag_rtcm_tty_port,
rtcm_tcp_port,
rtcm_station_id,
rtcm_msg_rate_ms,
rtcm_dump_devname,
rinex_version));
}
void gps_l1_ca_pvt_cc::msg_handler_telemetry(pmt::pmt_t msg)
{
try {
if( pmt::any_ref(msg).type() == typeid(std::shared_ptr<Gps_Ephemeris>) )
{
// ### GPS EPHEMERIS ###
std::shared_ptr<Gps_Ephemeris> gps_eph;
gps_eph = boost::any_cast<std::shared_ptr<Gps_Ephemeris>>(pmt::any_ref(msg));
DLOG(INFO) << "Ephemeris record has arrived from SAT ID "
<< gps_eph->i_satellite_PRN << " (Block "
<< gps_eph->satelliteBlock[gps_eph->i_satellite_PRN] << ")"
<< "inserted with Toe="<< gps_eph->d_Toe<<" and GPS Week="
<< gps_eph->i_GPS_week;
// update/insert new ephemeris record to the global ephemeris map
d_ls_pvt->gps_ephemeris_map[gps_eph->i_satellite_PRN] = *gps_eph;
}
else if (pmt::any_ref(msg).type() == typeid(std::shared_ptr<Gps_Iono>) )
{
// ### GPS IONO ###
std::shared_ptr<Gps_Iono> gps_iono;
gps_iono = boost::any_cast<std::shared_ptr<Gps_Iono>>(pmt::any_ref(msg));
d_ls_pvt->gps_iono = *gps_iono;
DLOG(INFO) << "New IONO record has arrived ";
}
else if (pmt::any_ref(msg).type() == typeid(std::shared_ptr<Gps_Utc_Model>) )
{
// ### GPS UTC MODEL ###
std::shared_ptr<Gps_Utc_Model> gps_utc_model;
gps_utc_model = boost::any_cast<std::shared_ptr<Gps_Utc_Model>>(pmt::any_ref(msg));
d_ls_pvt->gps_utc_model = *gps_utc_model;
DLOG(INFO) << "New UTC record has arrived ";
}
else if (pmt::any_ref(msg).type() == typeid(std::shared_ptr<Sbas_Ionosphere_Correction>) )
{
// ### SBAS IONO ###
std::shared_ptr<Sbas_Ionosphere_Correction> sbas_iono;
sbas_iono = boost::any_cast<std::shared_ptr<Sbas_Ionosphere_Correction>>(pmt::any_ref(msg));
d_ls_pvt->sbas_iono = *sbas_iono;
DLOG(INFO) << "New SBAS IONO record has arrived ";
}
//TODO: add SBAS correction maps here
//d_ls_pvt->sbas_sat_corr_map = global_sbas_sat_corr_map.get_map_copy();
//d_ls_pvt->sbas_ephemeris_map = global_sbas_ephemeris_map.get_map_copy();
else if (pmt::any_ref(msg).type() == typeid(std::shared_ptr<Sbas_Raw_Msg>) )
{
std::shared_ptr<Sbas_Raw_Msg> sbas_raw_msg_ptr;
sbas_raw_msg_ptr = boost::any_cast<std::shared_ptr<Sbas_Raw_Msg>>(pmt::any_ref(msg));
Sbas_Raw_Msg sbas_raw_msg = *sbas_raw_msg_ptr;
// read SBAS raw messages directly from queue and write them into rinex file
// create the header of not yet done
if(!b_rinex_sbs_header_written)
{
rp->rinex_sbs_header(rp->sbsFile);
b_rinex_sbs_header_written = true;
}
// Define the RX time of the SBAS message by using the GPS time.
// It has only an effect if there has not been yet a SBAS MT12 available
// when the message was received.
if(sbas_raw_msg.get_rx_time_obj().is_related() == false
&& gnss_observables_map.size() > 0
&& d_ls_pvt->gps_ephemeris_map.size() > 0)
{
// doesn't matter which channel/satellite we choose
Gnss_Synchro gs = gnss_observables_map.begin()->second;
Gps_Ephemeris eph = d_ls_pvt->gps_ephemeris_map.begin()->second;
double relative_rx_time = gs.Tracking_timestamp_secs;
int gps_week = eph.i_GPS_week;
double gps_sec = gs.d_TOW_at_current_symbol;
Sbas_Time_Relation time_rel(relative_rx_time, gps_week, gps_sec);
sbas_raw_msg.relate(time_rel);
}
// send the message to the rinex logger if it has a valid GPS time stamp
if(sbas_raw_msg.get_rx_time_obj().is_related())
{
rp->log_rinex_sbs(rp->sbsFile, sbas_raw_msg);
}
}
else
{
LOG(WARNING) << "msg_handler_telemetry unknown object type!";
}
}
catch(boost::bad_any_cast& e)
{
LOG(WARNING) << "msg_handler_telemetry Bad any cast!\n";
}
}
std::map<int,Gps_Ephemeris> gps_l1_ca_pvt_cc::get_GPS_L1_ephemeris_map()
{
return d_ls_pvt->gps_ephemeris_map;
}
bool gps_l1_ca_pvt_cc::send_sys_v_ttff_msg(ttff_msgbuf ttff)
{
/* Fill Sys V message structures */
int msgsend_size;
ttff_msgbuf msg;
msg.ttff = ttff.ttff;
msgsend_size = sizeof(msg.ttff);
msg.mtype = 1; /* default message ID */
/* SEND SOLUTION OVER A MESSAGE QUEUE */
/* non-blocking Sys V message send */
msgsnd(sysv_msqid, &msg, msgsend_size, IPC_NOWAIT);
return true;
}
gps_l1_ca_pvt_cc::gps_l1_ca_pvt_cc(unsigned int nchannels,
bool dump, std::string dump_filename,
int averaging_depth,
bool flag_averaging,
int output_rate_ms,
int display_rate_ms,
bool flag_nmea_tty_port,
std::string nmea_dump_filename,
std::string nmea_dump_devname,
bool flag_rtcm_server,
bool flag_rtcm_tty_port,
unsigned short rtcm_tcp_port,
unsigned short rtcm_station_id,
std::map<int,int> rtcm_msg_rate_ms,
std::string rtcm_dump_devname,
int rinex_version) :
gr::block("gps_l1_ca_pvt_cc", gr::io_signature::make(nchannels, nchannels, sizeof(Gnss_Synchro)),
gr::io_signature::make(0, 0, sizeof(gr_complex)) )
{
d_output_rate_ms = output_rate_ms;
d_display_rate_ms = display_rate_ms;
d_dump = dump;
d_nchannels = nchannels;
d_dump_filename = dump_filename;
std::string dump_ls_pvt_filename = dump_filename;
// GPS Ephemeris data message port in
this->message_port_register_in(pmt::mp("telemetry"));
this->set_msg_handler(pmt::mp("telemetry"),
boost::bind(&gps_l1_ca_pvt_cc::msg_handler_telemetry, this, _1));
// initialize kml_printer
std::string kml_dump_filename;
kml_dump_filename = d_dump_filename;
d_kml_printer = std::make_shared<Kml_Printer>();
d_kml_printer->set_headers(kml_dump_filename);
// initialize geojson_printer
std::string geojson_dump_filename;
geojson_dump_filename = d_dump_filename;
d_geojson_printer = std::make_shared<GeoJSON_Printer>();
d_geojson_printer->set_headers(geojson_dump_filename);
// initialize nmea_printer
d_nmea_printer = std::make_shared<Nmea_Printer>(nmea_dump_filename, flag_nmea_tty_port, nmea_dump_devname);
// initialize rtcm_printer
std::string rtcm_dump_filename;
rtcm_dump_filename = d_dump_filename;
d_rtcm_tcp_port = rtcm_tcp_port;
d_rtcm_station_id = rtcm_station_id;
d_rtcm_printer = std::make_shared<Rtcm_Printer>(rtcm_dump_filename, flag_rtcm_server, flag_rtcm_tty_port, d_rtcm_tcp_port, d_rtcm_station_id, rtcm_dump_devname);
if(rtcm_msg_rate_ms.find(1019) != rtcm_msg_rate_ms.end())
{
d_rtcm_MT1019_rate_ms = rtcm_msg_rate_ms[1019];
}
else
{
d_rtcm_MT1019_rate_ms = boost::math::lcm(5000, d_output_rate_ms); // default value if not set
}
if(rtcm_msg_rate_ms.find(1071) != rtcm_msg_rate_ms.end()) // whatever between 1071 and 1077
{
d_rtcm_MSM_rate_ms = rtcm_msg_rate_ms[1071];
}
else
{
d_rtcm_MSM_rate_ms = boost::math::lcm(1000, d_output_rate_ms); // default value if not set
}
b_rtcm_writing_started = false;
d_dump_filename.append("_raw.dat");
dump_ls_pvt_filename.append("_ls_pvt.dat");
d_averaging_depth = averaging_depth;
d_flag_averaging = flag_averaging;
d_ls_pvt = std::make_shared<gps_l1_ca_ls_pvt>((int)nchannels, dump_ls_pvt_filename, d_dump);
d_ls_pvt->set_averaging_depth(d_averaging_depth);
d_sample_counter = 0;
d_last_sample_nav_output = 0;
d_rx_time = 0.0;
d_last_status_print_seg = 0;
b_rinex_header_written = false;
b_rinex_header_updated = false;
b_rinex_sbs_header_written = false;
rp = std::make_shared<Rinex_Printer>(rinex_version);
// ############# ENABLE DATA FILE LOG #################
if (d_dump == true)
{
if (d_dump_file.is_open() == false)
{
try
{
d_dump_file.exceptions (std::ifstream::failbit | std::ifstream::badbit );
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
LOG(INFO) << "PVT dump enabled Log file: " << d_dump_filename.c_str();
}
catch (const std::ifstream::failure & e)
{
LOG(INFO) << "Exception opening PVT dump file " << e.what();
}
}
}
// Create Sys V message queue
first_fix = true;
sysv_msg_key = 1101;
int msgflg = IPC_CREAT | 0666;
if ((sysv_msqid = msgget(sysv_msg_key, msgflg )) == -1)
{
std::cout << "GNSS-SDR can not create message queues!" << std::endl;
throw new std::exception();
}
}
gps_l1_ca_pvt_cc::~gps_l1_ca_pvt_cc()
{
msgctl(sysv_msqid, IPC_RMID, NULL);
}
void gps_l1_ca_pvt_cc::print_receiver_status(Gnss_Synchro** channels_synchronization_data)
{
// Print the current receiver status using std::cout every second
int current_rx_seg = floor(channels_synchronization_data[0][0].Tracking_timestamp_secs);
if ( current_rx_seg!= d_last_status_print_seg)
{
d_last_status_print_seg = current_rx_seg;
std::cout << "Current input signal time = " << current_rx_seg << " [s]" << std::endl << std::flush;
//DLOG(INFO) << "GPS L1 C/A Tracking CH " << d_channel << ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
// << ", CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]";
}
}
int gps_l1_ca_pvt_cc::general_work (int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)),
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items __attribute__((unused)))
{
gnss_observables_map.clear();
d_sample_counter++;
Gnss_Synchro **in = (Gnss_Synchro **) &input_items[0]; // Get the input pointer
print_receiver_status(in);
// ############ 1. READ PSEUDORANGES ####
for (unsigned int i = 0; i < d_nchannels; i++)
{
if (in[i][0].Flag_valid_pseudorange == true)
{
gnss_observables_map.insert(std::pair<int,Gnss_Synchro>(in[i][0].PRN, in[i][0])); // store valid pseudoranges in a map
d_rx_time = in[i][0].d_TOW_at_current_symbol; // all the channels have the same RX timestamp (common RX time pseudoranges)
if(d_ls_pvt->gps_ephemeris_map.size() > 0)
{
std::map<int,Gps_Ephemeris>::iterator tmp_eph_iter = d_ls_pvt->gps_ephemeris_map.find(in[i][0].PRN);
if(tmp_eph_iter != d_ls_pvt->gps_ephemeris_map.end())
{
d_rtcm_printer->lock_time(d_ls_pvt->gps_ephemeris_map.find(in[i][0].PRN)->second, d_rx_time, in[i][0]); // keep track of locking time
}
}
}
}
// ############ 2 COMPUTE THE PVT ################################
if (gnss_observables_map.size() > 0 and d_ls_pvt->gps_ephemeris_map.size() > 0)
{
// compute on the fly PVT solution
if ((d_sample_counter % d_output_rate_ms) == 0)
{
bool pvt_result;
pvt_result = d_ls_pvt->get_PVT(gnss_observables_map, d_rx_time, d_flag_averaging);
if (pvt_result == true)
{
// correct the observable to account for the receiver clock offset
for (std::map<int,Gnss_Synchro>::iterator it = gnss_observables_map.begin(); it != gnss_observables_map.end(); ++it)
{
it->second.Pseudorange_m = it->second.Pseudorange_m - d_ls_pvt->d_rx_dt_s * GPS_C_m_s;
}
if(first_fix == true)
{
std::cout << "First position fix at " << boost::posix_time::to_simple_string(d_ls_pvt->d_position_UTC_time)
<< " UTC is Lat = " << d_ls_pvt->d_latitude_d << " [deg], Long = " << d_ls_pvt->d_longitude_d
<< " [deg], Height= " << d_ls_pvt->d_height_m << " [m]" << std::endl;
ttff_msgbuf ttff;
ttff.mtype = 1;
ttff.ttff = d_sample_counter;
send_sys_v_ttff_msg(ttff);
first_fix = false;
}
d_kml_printer->print_position(d_ls_pvt, d_flag_averaging);
d_geojson_printer->print_position(d_ls_pvt, d_flag_averaging);
d_nmea_printer->Print_Nmea_Line(d_ls_pvt, d_flag_averaging);
if (!b_rinex_header_written)
{
std::map<int,Gps_Ephemeris>::iterator gps_ephemeris_iter;
gps_ephemeris_iter = d_ls_pvt->gps_ephemeris_map.begin();
if (gps_ephemeris_iter != d_ls_pvt->gps_ephemeris_map.end())
{
rp->rinex_obs_header(rp->obsFile, gps_ephemeris_iter->second, d_rx_time);
rp->rinex_nav_header(rp->navFile, d_ls_pvt->gps_iono, d_ls_pvt->gps_utc_model);
b_rinex_header_written = true; // do not write header anymore
}
}
if(b_rinex_header_written)
{
// Limit the RINEX navigation output rate to 1/6 seg
// Notice that d_sample_counter period is 1ms (for GPS correlators)
if ((d_sample_counter - d_last_sample_nav_output) >= 6000)
{
rp->log_rinex_nav(rp->navFile, d_ls_pvt->gps_ephemeris_map);
d_last_sample_nav_output = d_sample_counter;
}
std::map<int,Gps_Ephemeris>::iterator gps_ephemeris_iter;
gps_ephemeris_iter = d_ls_pvt->gps_ephemeris_map.begin();
if (gps_ephemeris_iter != d_ls_pvt->gps_ephemeris_map.end())
{
rp->log_rinex_obs(rp->obsFile, gps_ephemeris_iter->second, d_rx_time, gnss_observables_map);
}
if (!b_rinex_header_updated && (d_ls_pvt->gps_utc_model.d_A0 != 0))
{
rp->update_obs_header(rp->obsFile, d_ls_pvt->gps_utc_model);
rp->update_nav_header(rp->navFile, d_ls_pvt->gps_utc_model, d_ls_pvt->gps_iono);
b_rinex_header_updated = true;
}
}
if(b_rtcm_writing_started)
{
if((d_sample_counter % d_rtcm_MT1019_rate_ms) == 0)
{
for(std::map<int,Gps_Ephemeris>::iterator gps_ephemeris_iter = d_ls_pvt->gps_ephemeris_map.begin(); gps_ephemeris_iter != d_ls_pvt->gps_ephemeris_map.end(); gps_ephemeris_iter++ )
{
d_rtcm_printer->Print_Rtcm_MT1019(gps_ephemeris_iter->second);
}
}
if((d_sample_counter % d_rtcm_MSM_rate_ms) == 0)
{
std::map<int,Gps_Ephemeris>::iterator gps_ephemeris_iter;
gps_ephemeris_iter = d_ls_pvt->gps_ephemeris_map.begin();
if (gps_ephemeris_iter != d_ls_pvt->gps_ephemeris_map.end())
{
d_rtcm_printer->Print_Rtcm_MSM(7, gps_ephemeris_iter->second, {}, {}, d_rx_time, gnss_observables_map, 0, 0, 0, 0, 0);
}
}
}
if(!b_rtcm_writing_started) // the first time
{
for(std::map<int,Gps_Ephemeris>::iterator gps_ephemeris_iter = d_ls_pvt->gps_ephemeris_map.begin(); gps_ephemeris_iter != d_ls_pvt->gps_ephemeris_map.end(); gps_ephemeris_iter++ )
{
d_rtcm_printer->Print_Rtcm_MT1019(gps_ephemeris_iter->second);
}
std::map<int,Gps_Ephemeris>::iterator gps_ephemeris_iter = d_ls_pvt->gps_ephemeris_map.begin();
if (gps_ephemeris_iter != d_ls_pvt->gps_ephemeris_map.end())
{
d_rtcm_printer->Print_Rtcm_MSM(7, gps_ephemeris_iter->second, {}, {}, d_rx_time, gnss_observables_map, 0, 0, 0, 0, 0);
}
b_rtcm_writing_started = true;
}
}
}
// DEBUG MESSAGE: Display position in console output
if (((d_sample_counter % d_display_rate_ms) == 0) and d_ls_pvt->b_valid_position == true)
{
std::cout << "Position at " << boost::posix_time::to_simple_string(d_ls_pvt->d_position_UTC_time)
<< " UTC is Lat = " << d_ls_pvt->d_latitude_d << " [deg], Long = " << d_ls_pvt->d_longitude_d
<< " [deg], Height= " << d_ls_pvt->d_height_m << " [m]" << std::endl;
LOG(INFO) << "Position at " << boost::posix_time::to_simple_string(d_ls_pvt->d_position_UTC_time)
<< " UTC is Lat = " << d_ls_pvt->d_latitude_d << " [deg], Long = " << d_ls_pvt->d_longitude_d
<< " [deg], Height= " << d_ls_pvt->d_height_m << " [m]";
LOG(INFO) << "Dilution of Precision at " << boost::posix_time::to_simple_string(d_ls_pvt->d_position_UTC_time)
<< " is HDOP = " << d_ls_pvt->d_HDOP << " VDOP = "
<< d_ls_pvt->d_VDOP <<" TDOP = " << d_ls_pvt->d_TDOP << " GDOP = " << d_ls_pvt->d_GDOP;
}
// MULTIPLEXED FILE RECORDING - Record results to file
if(d_dump == true)
{
try
{
double tmp_double;
for (unsigned int i = 0; i < d_nchannels ; i++)
{
tmp_double = in[i][0].Pseudorange_m;
d_dump_file.write((char*)&tmp_double, sizeof(double));
tmp_double = 0;
d_dump_file.write((char*)&tmp_double, sizeof(double));
d_dump_file.write((char*)&d_rx_time, sizeof(double));
}
}
catch (const std::ifstream::failure & e)
{
LOG(WARNING) << "Exception writing observables dump file " << e.what();
}
}
}
consume_each(1); //one by one
return 1;
}