1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-05-15 05:44:09 +00:00
gnss-sdr/utils/skyplot/skyplot.py
2025-04-30 15:30:53 +02:00

476 lines
16 KiB
Python
Executable File

#!/usr/bin/env python
"""
skyplot.py
Reads a RINEX navigation file and generates a skyplot
Usage: python skyplot.py <RINEX_NAV_FILE> [observer_lat] [observer_lon] [observer_alt]
-----------------------------------------------------------------------------
GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
This file is part of GNSS-SDR.
SPDX-FileCopyrightText: 2025 Carles Fernandez-Prades cfernandez(at)cttc.es
SPDX-License-Identifier: GPL-3.0-or-later
-----------------------------------------------------------------------------
"""
import argparse
import re
import sys
from datetime import datetime, timedelta
from math import atan2, cos, sin, sqrt
import matplotlib.pyplot as plt
import numpy as np
def parse_rinex_float(s):
"""Parse RINEX formatted float string which may contain D or E exponent and compact spacing"""
# Handle empty string
if not s.strip():
return 0.0
# Replace D exponent with E (some RINEX files use D instead of E)
s = s.replace('D', 'E').replace('d', 'e')
# Handle cases where exponent lacks E (e.g., "12345-3")
if re.match(r'[+-]?\d+[+-]\d+', s.strip()):
s = s.replace('+', 'E+').replace('-', 'E-')
try:
return float(s)
except ValueError:
# Handle cases where the number runs into the next field
# Try to split at the exponent if present
if 'E' in s:
base, exp = s.split('E')[:2]
# Take first character of exponent if needed
if exp and exp[0] in '+-' and len(exp) > 1:
return float(base + 'E' + exp[0] + exp[1:].split()[0])
return 0.0 # Default if parsing fails
def read_rinex_nav(filename):
"""Read RINEX v3.0 navigation file"""
satellites = {}
with open(filename, 'r', encoding='utf-8') as f:
# Skip header
while True:
line = f.readline()
if not line:
return satellites # Empty file
if "END OF HEADER" in line:
break
# Read ephemeris data
current_line = f.readline()
while current_line:
if len(current_line) < 23:
current_line = f.readline()
continue
prn = current_line[:3].strip()
try:
# Parse epoch fields with careful position handling
year = int(current_line[4:8])
month = int(current_line[9:11])
day = int(current_line[12:14])
hour = int(current_line[15:17])
minute = int(current_line[18:20])
second = int(float(current_line[21:23]))
year += 2000 if year < 80 else 0
epoch = datetime(year, month, day, hour, minute, second)
# Read the next 7 lines
lines = [current_line]
for _ in range(7):
next_line = f.readline()
if not next_line:
break
lines.append(next_line)
if len(lines) < 8:
current_line = f.readline()
continue
# Parse all ephemeris parameters with robust float handling
ephemeris = {
'prn': prn,
'epoch': epoch,
'sv_clock_bias': parse_rinex_float(lines[0][23:42]),
'sv_clock_drift': parse_rinex_float(lines[0][42:61]),
'sv_clock_drift_rate': parse_rinex_float(lines[0][61:80]),
'iode': parse_rinex_float(lines[1][4:23]),
'crs': parse_rinex_float(lines[1][23:42]),
'delta_n': parse_rinex_float(lines[1][42:61]),
'm0': parse_rinex_float(lines[1][61:80]),
'cuc': parse_rinex_float(lines[2][4:23]),
'ecc': parse_rinex_float(lines[2][23:42]),
'cus': parse_rinex_float(lines[2][42:61]),
'sqrt_a': parse_rinex_float(lines[2][61:80]),
'toe': parse_rinex_float(lines[3][4:23]),
'cic': parse_rinex_float(lines[3][23:42]),
'omega0': parse_rinex_float(lines[3][42:61]),
'cis': parse_rinex_float(lines[3][61:80]),
'i0': parse_rinex_float(lines[4][4:23]),
'crc': parse_rinex_float(lines[4][23:42]),
'omega': parse_rinex_float(lines[4][42:61]),
'omega_dot': parse_rinex_float(lines[4][61:80]),
'idot': parse_rinex_float(lines[5][4:23]),
'codes_l2': parse_rinex_float(lines[5][23:42]),
'gps_week': parse_rinex_float(lines[5][42:61]),
'l2p_flag': parse_rinex_float(lines[5][61:80]),
'sv_accuracy': parse_rinex_float(lines[6][4:23]),
'sv_health': parse_rinex_float(lines[6][23:42]),
'tgd': parse_rinex_float(lines[6][42:61]),
'iodc': parse_rinex_float(lines[6][61:80]),
'transmission_time': parse_rinex_float(lines[7][4:23]),
'fit_interval': (
parse_rinex_float(lines[7][23:42])) if len(lines[7]) > 23 else 0.0
}
if prn not in satellites:
satellites[prn] = []
satellites[prn].append(ephemeris)
except (ValueError, IndexError) as e:
print(f"Error parsing PRN {prn} at {epoch}: {e}")
# Skip to next block by reading until next PRN
while current_line and not current_line.startswith(prn[0]):
current_line = f.readline()
continue
current_line = f.readline()
return satellites
def calculate_satellite_position(ephemeris, transmit_time):
"""Calculate satellite position in ECEF coordinates at given transmission time"""
# Constants
mu = 3.986005e14 # Earth's gravitational constant (m^3/s^2)
omega_e_dot = 7.2921151467e-5 # Earth rotation rate (rad/s)
# Semi-major axis
a = ephemeris['sqrt_a'] ** 2
# Time difference from ephemeris reference time
tk = transmit_time - ephemeris['toe']
# Corrected mean motion
n0 = sqrt(mu / (a ** 3))
n = n0 + ephemeris['delta_n']
# Mean anomaly
mk = ephemeris['m0'] + n * tk
# Solve Kepler's equation for eccentric anomaly (Ek)
ek = mk
for _ in range(10):
ek_old = ek
ek = mk + ephemeris['ecc'] * sin(ek)
if abs(ek - ek_old) < 1e-12:
break
# True anomaly
nu_k = atan2(sqrt(1 - ephemeris['ecc']**2) * sin(ek), cos(ek) - ephemeris['ecc'])
# Argument of latitude
phi_k = nu_k + ephemeris['omega']
# Second harmonic perturbations
delta_uk = ephemeris['cus'] * sin(2 * phi_k) + ephemeris['cuc'] * cos(2 * phi_k)
delta_rk = ephemeris['crs'] * sin(2 * phi_k) + ephemeris['crc'] * cos(2 * phi_k)
delta_ik = ephemeris['cis'] * sin(2 * phi_k) + ephemeris['cic'] * cos(2 * phi_k)
# Corrected argument of latitude, radius and inclination
uk = phi_k + delta_uk
rk = a * (1 - ephemeris['ecc'] * cos(ek)) + delta_rk
ik = ephemeris['i0'] + delta_ik + ephemeris['idot'] * tk
# Positions in orbital plane
xk_prime = rk * cos(uk)
yk_prime = rk * sin(uk)
# Corrected longitude of ascending node
omega_k = (
ephemeris['omega0']
+ (ephemeris['omega_dot'] - omega_e_dot) * tk
- omega_e_dot * ephemeris['toe']
)
# Earth-fixed coordinates
xk = xk_prime * cos(omega_k) - yk_prime * cos(ik) * sin(omega_k)
yk = xk_prime * sin(omega_k) + yk_prime * cos(ik) * cos(omega_k)
zk = yk_prime * sin(ik)
return xk, yk, zk
def calculate_satellite_positions(ephemeris, start_time, end_time, step_min=15):
"""Generate multiple positions over time for a single satellite
between start_time and end_time.
"""
positions = []
current_time = start_time
while current_time <= end_time:
transmit_time = (current_time - ephemeris['epoch']).total_seconds()
# Only calculate positions within ephemeris validity (typically 4 hours)
if abs(transmit_time) <= 4 * 3600:
x, y, z = calculate_satellite_position(ephemeris, transmit_time)
positions.append((current_time, x, y, z))
current_time += timedelta(minutes=step_min)
return positions
def ecef_to_az_el(x, y, z, obs_lat, obs_lon, obs_alt):
"""Convert ECEF coordinates to azimuth and elevation"""
# WGS-84 parameters
a = 6378137.0 # semi-major axis
e_sq = 6.69437999014e-3 # first eccentricity squared
# Convert geodetic coordinates to ECEF
n = a / sqrt(1 - e_sq * sin(obs_lat)**2)
obs_x = (n + obs_alt) * cos(obs_lat) * cos(obs_lon)
obs_y = (n + obs_alt) * cos(obs_lat) * sin(obs_lon)
obs_z = (n * (1 - e_sq) + obs_alt) * sin(obs_lat)
# Vector from observer to satellite
dx = x - obs_x
dy = y - obs_y
dz = z - obs_z
# Convert to local ENU (East, North, Up) coordinates
enu_x = -sin(obs_lon) * dx + cos(obs_lon) * dy
enu_y = -sin(obs_lat) * cos(obs_lon) * dx - sin(obs_lat) * sin(obs_lon) * dy + cos(obs_lat) * dz
enu_z = cos(obs_lat) * cos(obs_lon) * dx + cos(obs_lat) * sin(obs_lon) * dy + sin(obs_lat) * dz
# Calculate azimuth and elevation
azimuth = atan2(enu_x, enu_y)
elevation = atan2(enu_z, sqrt(enu_x**2 + enu_y**2))
# Convert to degrees and adjust azimuth to 0-360
azimuth = np.degrees(azimuth) % 360
elevation = np.degrees(elevation)
return azimuth, elevation
def plot_satellite_tracks(satellites, obs_lat, obs_lon, obs_alt,
footer_text=None, filename=None,
show_plot=True):
"""Plot trajectories for all visible satellites"""
plt.rcParams["font.family"] = "Times New Roman"
fig = plt.figure(figsize=(8, 8))
ax = fig.add_subplot(111, projection='polar')
ax.tick_params(labelsize=16, pad=7)
# Polar plot setup
ax.set_theta_zero_location('N')
ax.set_theta_direction(-1)
ax.set_ylim(0, 90)
# Elevation ticks
ax.set_yticks(range(0, 91, 15))
ax.set_yticklabels(['90°', '', '60°', '', '30°', '', ''], fontsize=14)
# Color scheme by constellation
system_colors = {
'G': 'blue', # GPS
'E': 'green', # Galileo
'R': 'red', # GLONASS
'C': 'orange' # BeiDou
}
for prn, ephemeris_list in satellites.items():
color = system_colors.get(prn[0], 'purple')
# Get the most recent ephemeris
if not ephemeris_list:
continue
ephemeris = max(ephemeris_list, key=lambda x: x['epoch'])
# Calculate trajectory
all_epochs = sorted({e['epoch'] for prn_data in satellites.values() for e in prn_data})
start_time = min(all_epochs)
end_time = max(all_epochs)
positions = calculate_satellite_positions(ephemeris, start_time, end_time)
az = []
el = []
for _, x, y, z in positions:
azimuth, elevation = ecef_to_az_el(x, y, z, obs_lat, obs_lon, obs_alt)
if elevation > 0: # Above horizon
az.append(azimuth)
el.append(elevation)
if len(az) > 1:
# Convert to polar coordinates
theta = np.radians(az)
r = 90 - np.array(el)
# Plot trajectory
ax.plot(theta, r, '-', color=color, alpha=0.7, linewidth=2.5)
# Label at midpoint
mid_idx = len(theta)//2
ax.text(theta[mid_idx], r[mid_idx], prn,
fontsize=12, ha='center', va='center',
bbox={"facecolor": "white", "alpha": 0.8, "pad": 2})
# Add legend and metadata
legend_elements = [plt.Line2D([0], [0], marker='o', color='w',
label=f'{sys} ({name})', markerfacecolor=color, markersize=10)
for sys, (name, color) in [
('G', ('GPS', 'blue')),
('E', ('Galileo', 'green')),
('R', ('GLONASS', 'red')),
('C', ('BeiDou', 'orange'))
]]
ax.legend(handles=legend_elements, loc='upper right',
bbox_to_anchor=(1.3, 1.1), fontsize=14)
lat_deg = np.degrees(obs_lat)
lon_deg = np.degrees(obs_lon)
lat_hemisphere = 'N' if lat_deg >= 0 else 'S'
lon_hemisphere = 'E' if lon_deg >= 0 else 'W'
plt.title(
f"GNSS skyplot from {abs(lat_deg):.2f}° {lat_hemisphere}, "
f"{abs(lon_deg):.2f}° {lon_hemisphere}",
pad=25,
fontsize=20
)
if footer_text:
fig.text(0.42, 0.05, footer_text, ha='center', va='center', fontsize=16)
plt.tight_layout()
if filename:
filename_no_dots = filename.replace('.', '_')
output_name = f"skyplot_{filename_no_dots}.pdf"
else:
output_name = "skyplot.pdf"
plt.savefig(output_name, format='pdf', bbox_inches='tight')
print(f"Image saved as {output_name}")
if show_plot:
plt.show()
else:
plt.close()
def main():
"""Generate the skyplot"""
# Set up argument parser
parser = argparse.ArgumentParser(
description='Generate GNSS skyplot from RINEX navigation file',
add_help=False
)
# Add only the no-show flag
parser.add_argument(
'--no-show',
action='store_true',
help='Run without displaying plot window'
)
# Parse known args (this ignores other positional args)
args, remaining_args = parser.parse_known_args()
# Handle help manually
if '-h' in remaining_args or '--help' in remaining_args:
print("""
Usage: python skyplot.py <RINEX_FILE> [LATITUDE] [LONGITUDE] [ALTITUDE] [--no-show]
Example:
python skyplot.py brdc0010.22n 41.275 1.9876 80.0 --no-show
""")
sys.exit(0)
if len(remaining_args) < 1:
print("Error: RINEX file required")
sys.exit(1)
filename = remaining_args[0]
# Default observer location (Castelldefels, Barcelona, Spain)
obs_lat = np.radians(41.2750)
obs_lon = np.radians(1.9876)
obs_alt = 80.0
# Override with command line arguments if provided
if len(remaining_args) >= 4:
try:
obs_lat = np.radians(float(remaining_args[1]))
obs_lon = np.radians(float(remaining_args[2]))
if len(remaining_args) >= 5:
obs_alt = float(remaining_args[3])
except ValueError:
print("Invalid observer coordinates. Using defaults.")
# Read RINEX file
print(f"Reading {filename}...")
try:
satellites = read_rinex_nav(filename)
except FileNotFoundError:
print(f"Error: File '{filename}' not found.")
return
if not satellites:
print("No satellite data found in the file.")
return
# Print summary information
all_epochs = sorted(list(set(
e['epoch'] for prn, ephemerides in satellites.items() for e in ephemerides
)))
print("\nFile contains:")
print(f"- {len(satellites)} unique satellites")
print(f"- {len(all_epochs)} unique epochs")
print(f"- From {all_epochs[0]} to {all_epochs[-1]}")
# Calculate and print satellite counts by system
system_counts = {}
for prn in satellites:
system = prn[0]
system_counts[system] = system_counts.get(system, 0) + 1
print("\nSatellite systems found:")
for system, count in sorted(system_counts.items()):
system_name = {
'G': 'GPS',
'R': 'GLONASS',
'E': 'Galileo',
'C': 'BeiDou'
}.get(system, 'Unknown')
print(f"- {system_name} ({system}): {count} satellites")
# Generate the combined skyplot
print("\nGenerating skyplot...")
footer = f"From {all_epochs[0]} to {all_epochs[-1]} UTC"
plot_satellite_tracks(
satellites,
obs_lat,
obs_lon,
obs_alt,
footer_text=footer,
filename=filename,
show_plot=not args.no_show
)
if __name__ == "__main__":
main()