mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2024-11-17 07:14:55 +00:00
0d60d97c24
Update copyright year in headers
95 lines
4.0 KiB
C
95 lines
4.0 KiB
C
/*!
|
|
* \file lock_detectors.h
|
|
* \brief Interface of a library with a set of code and carrier phase lock detectors.
|
|
*
|
|
* SNV_CN0 is a Carrier-to-Noise (CN0) estimator
|
|
* based on the Signal-to-Noise Variance (SNV) estimator [1].
|
|
* Carrier lock detector using normalised estimate of the cosine
|
|
* of twice the carrier phase error [2].
|
|
*
|
|
* [1] Marco Pini, Emanuela Falletti and Maurizio Fantino, "Performance
|
|
* Evaluation of C/N0 Estimators using a Real Time GNSS Software Receiver,"
|
|
* IEEE 10th International Symposium on Spread Spectrum Techniques and
|
|
* Applications, pp.28-30, August 2008.
|
|
*
|
|
* [2] Van Dierendonck, A.J. (1996), Global Positioning System: Theory and
|
|
* Applications,
|
|
* Volume I, Chapter 8: GPS Receivers, AJ Systems, Los Altos, CA 94024.
|
|
* Inc.: 329-407.
|
|
* \authors <ul>
|
|
* <li> Javier Arribas, 2011. jarribas(at)cttc.es
|
|
* <li> Luis Esteve, 2012. luis(at)epsilon-formacion.com
|
|
* </ul>
|
|
* -------------------------------------------------------------------------
|
|
*
|
|
* Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
|
|
*
|
|
* GNSS-SDR is a software defined Global Navigation
|
|
* Satellite Systems receiver
|
|
*
|
|
* This file is part of GNSS-SDR.
|
|
*
|
|
* GNSS-SDR is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* GNSS-SDR is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
|
|
*
|
|
* -------------------------------------------------------------------------
|
|
*/
|
|
|
|
#ifndef GNSS_SDR_LOCK_DETECTORS_H_
|
|
#define GNSS_SDR_LOCK_DETECTORS_H_
|
|
|
|
#include <gnuradio/gr_complex.h>
|
|
|
|
|
|
/*! \brief CN0_SNV is a Carrier-to-Noise (CN0) estimator
|
|
* based on the Signal-to-Noise Variance (SNV) estimator
|
|
*
|
|
* Signal-to-Noise (SNR) (\f$\rho\f$) estimator using the Signal-to-Noise Variance (SNV) estimator:
|
|
* \f{equation}
|
|
* \hat{\rho}=\frac{\hat{P}_s}{\hat{P}_n}=\frac{\hat{P}_s}{\hat{P}_{tot}-\hat{P}_s},
|
|
* \f}
|
|
* where \f$\hat{P}_s=\left(\frac{1}{N}\sum^{N-1}_{i=0}|Re(Pc(i))|\right)^2\f$ is the estimation of the signal power,
|
|
* \f$\hat{P}_{tot}=\frac{1}{N}\sum^{N-1}_{i=0}|Pc(i)|^2\f$ is the estimator of the total power, \f$|\cdot|\f$ is the absolute value,
|
|
* \f$Re(\cdot)\f$ stands for the real part of the value, and \f$Pc(i)\f$ is the prompt correlator output for the sample index i.
|
|
*
|
|
* The SNR value is converted to CN0 [dB-Hz], taking to account the coherent integration time, using the following formula:
|
|
* \f{equation}
|
|
* CN0_{dB}=10*log(\hat{\rho})-10*log(2 * T_{int}),
|
|
* \f}
|
|
* where \f$T_{int}\f$ is the coherent integration time, in seconds.
|
|
* Ref: Marco Pini, Emanuela Falletti and Maurizio Fantino, "Performance
|
|
* Evaluation of C/N0 Estimators using a Real Time GNSS Software Receiver,"
|
|
* IEEE 10th International Symposium on Spread Spectrum Techniques and
|
|
* Applications, pp.28-30, August 2008.
|
|
*/
|
|
float cn0_svn_estimator(const gr_complex* Prompt_buffer, int length, double coh_integration_time_s);
|
|
|
|
|
|
/*! \brief A carrier lock detector
|
|
*
|
|
* The Carrier Phase Lock Detector block uses the estimate of the cosine of twice the carrier phase error is given by
|
|
* \f{equation}
|
|
* C2\phi=\frac{NBD}{NBP},
|
|
* \f}
|
|
* where \f$NBD=(\sum^{N-1}_{i=0}|Im(Pc(i))|)^2+(\sum^{N-1}_{i=0}|Re(Pc(i))|)^2\f$,
|
|
* \f$NBP=\sum^{N-1}_{i=0}Im(Pc(i))^2-\sum^{N-1}_{i=0}Re(Pc(i))^2\f$, and
|
|
* \f$Pc(i)\f$ is the prompt correlator output for the sample index i.
|
|
* Ref: Van Dierendonck, A.J. (1996), Global Positioning System: Theory and
|
|
* Applications,
|
|
* Volume I, Chapter 8: GPS Receivers, AJ Systems, Los Altos, CA 94024.
|
|
* Inc.: 329-407.
|
|
*/
|
|
float carrier_lock_detector(gr_complex* Prompt_buffer, int length);
|
|
|
|
#endif
|