gnss-sdr/src/algorithms/acquisition/gnuradio_blocks/gps_pcps_acquisition_fpga_s...

318 lines
12 KiB
C++

/*!
* \file gps_pcps_acquisition_fpga_sc.cc
* \brief This class implements a Parallel Code Phase Search Acquisition in the FPGA.
* This file is based on the file gps_pcps_acquisition_sc.cc
* \authors <ul>
* <li> Marc Majoral, 2017. mmajoral(at)cttc.cat
* </ul>
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "gps_pcps_acquisition_fpga_sc.h"
#include <sstream>
#include <boost/filesystem.hpp>
#include <gnuradio/io_signature.h>
#include <glog/logging.h>
#include <volk/volk.h>
#include <volk_gnsssdr/volk_gnsssdr.h>
#include "control_message_factory.h"
#include "GPS_L1_CA.h" //GPS_TWO_PI
using google::LogMessage;
void wait3(int seconds)
{
boost::this_thread::sleep_for(boost::chrono::seconds{seconds});
}
gps_pcps_acquisition_fpga_sc_sptr gps_pcps_make_acquisition_fpga_sc(
unsigned int sampled_ms, unsigned int max_dwells,
unsigned int doppler_max, long freq, long fs_in, int samples_per_ms,
int samples_per_code, int vector_length, unsigned int nsamples_total,
bool bit_transition_flag, bool use_CFAR_algorithm_flag,
unsigned int select_queue_Fpga, std::string device_name, bool dump,
std::string dump_filename)
{
return gps_pcps_acquisition_fpga_sc_sptr(
new gps_pcps_acquisition_fpga_sc(sampled_ms, max_dwells,
doppler_max, freq, fs_in, samples_per_ms, samples_per_code,
vector_length, nsamples_total, bit_transition_flag,
use_CFAR_algorithm_flag, select_queue_Fpga, device_name,
dump, dump_filename));
}
gps_pcps_acquisition_fpga_sc::gps_pcps_acquisition_fpga_sc(
unsigned int sampled_ms, unsigned int max_dwells,
unsigned int doppler_max, long freq, long fs_in, int samples_per_ms,
int samples_per_code, int vector_length, unsigned int nsamples_total,
bool bit_transition_flag, bool use_CFAR_algorithm_flag,
unsigned int select_queue_Fpga, std::string device_name, bool dump,
std::string dump_filename) :
gr::block("pcps_acquisition_fpga_sc",
gr::io_signature::make(0, 0, sizeof(lv_16sc_t)),
gr::io_signature::make(0, 0, 0))
{
this->message_port_register_out(pmt::mp("events"));
d_sample_counter = 0; // SAMPLE COUNTER
d_active = false;
d_state = 0;
d_samples_per_code = samples_per_code;
d_max_dwells = max_dwells; // Note : d_max_dwells is not used in the FPGA implementation
d_well_count = 0;
d_doppler_max = doppler_max;
d_fft_size = sampled_ms * samples_per_ms;
d_mag = 0;
d_num_doppler_bins = 0;
d_bit_transition_flag = bit_transition_flag; // Note : bit transition flag is ignored and assumed 0 in the FPGA implementation
d_use_CFAR_algorithm_flag = use_CFAR_algorithm_flag; // Note : user CFAR algorithm flag is ignored and assumed 0 in the FPGA implementation
d_threshold = 0.0;
d_doppler_step = 250;
d_channel = 0;
// For dumping samples into a file
d_dump = dump;
d_dump_filename = dump_filename;
d_gnss_synchro = 0;
// instantiate HW accelerator class
acquisition_fpga_8sc = std::make_shared<gps_fpga_acquisition_8sc>(device_name, vector_length, d_fft_size, nsamples_total, fs_in, freq, sampled_ms, select_queue_Fpga);
}
gps_pcps_acquisition_fpga_sc::~gps_pcps_acquisition_fpga_sc()
{
if (d_dump)
{
d_dump_file.close();
}
acquisition_fpga_8sc->free();
}
void gps_pcps_acquisition_fpga_sc::set_local_code()
{
acquisition_fpga_8sc->set_local_code(d_gnss_synchro->PRN);
}
void gps_pcps_acquisition_fpga_sc::init()
{
d_gnss_synchro->Flag_valid_acquisition = false;
d_gnss_synchro->Flag_valid_symbol_output = false;
d_gnss_synchro->Flag_valid_pseudorange = false;
d_gnss_synchro->Flag_valid_word = false;
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0;
d_mag = 0.0;
d_num_doppler_bins = ceil(
static_cast<double>(static_cast<int>(d_doppler_max) - static_cast<int>(-d_doppler_max)) / static_cast<double>(d_doppler_step));
acquisition_fpga_8sc->open_device();
acquisition_fpga_8sc->init();
}
void gps_pcps_acquisition_fpga_sc::set_state(int state)
{
d_state = state;
if (d_state == 1)
{
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0;
d_well_count = 0;
d_mag = 0.0;
}
else if (d_state == 0)
{
}
else
{
LOG(ERROR) << "State can only be set to 0 or 1";
}
}
void gps_pcps_acquisition_fpga_sc::set_active(bool active)
{
float temp_peak_to_noise_level = 0.0;
float peak_to_noise_level = 0.0;
float input_power;
float test_statistics = 0.0;
acquisition_fpga_8sc->block_samples(); // block the samples to run the acquisition this is only necessary for the tests
d_active = active;
int acquisition_message = -1; //0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL
d_state = 1;
// initialize acquisition algorithm
int doppler;
uint32_t indext = 0;
float magt = 0.0;
//int effective_fft_size = ( d_bit_transition_flag ? d_fft_size/2 : d_fft_size );
int effective_fft_size = d_fft_size;
//float fft_normalization_factor = static_cast<float>(d_fft_size) * static_cast<float>(d_fft_size);
d_mag = 0.0;
unsigned int initial_sample;
d_well_count++;
DLOG(INFO) << "Channel: " << d_channel
<< " , doing acquisition of satellite: " << d_gnss_synchro->System
<< " " << d_gnss_synchro->PRN << " ,sample stamp: "
<< d_sample_counter << ", threshold: "
<< ", threshold: "
<< d_threshold << ", doppler_max: " << d_doppler_max
<< ", doppler_step: " << d_doppler_step;
// Doppler frequency search loop
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins;
doppler_index++)
{
doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index;
acquisition_fpga_8sc->set_phase_step(doppler_index);
acquisition_fpga_8sc->run_acquisition(); // runs acquisition and waits until it is finished
acquisition_fpga_8sc->read_acquisition_results(&indext, &magt,
&initial_sample, &input_power);
d_sample_counter = initial_sample;
temp_peak_to_noise_level = static_cast<float>(magt) / static_cast<float>(input_power);
if (peak_to_noise_level < temp_peak_to_noise_level)
{
peak_to_noise_level = temp_peak_to_noise_level;
d_mag = magt;
input_power = (input_power - d_mag) / (effective_fft_size - 1);
d_gnss_synchro->Acq_delay_samples =
static_cast<double>(indext % d_samples_per_code);
d_gnss_synchro->Acq_doppler_hz =
static_cast<double>(doppler);
d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter;
test_statistics = d_mag / input_power;
}
// Record results to file if required
if (d_dump)
{
std::stringstream filename;
//std::streamsize n = 2 * sizeof(float) * (d_fft_size); // complex file write
filename.str("");
boost::filesystem::path p = d_dump_filename;
filename << p.parent_path().string()
<< boost::filesystem::path::preferred_separator
<< p.stem().string() << "_"
<< d_gnss_synchro->System << "_"
<< d_gnss_synchro->Signal << "_sat_"
<< d_gnss_synchro->PRN << "_doppler_" << doppler
<< p.extension().string();
DLOG(INFO) << "Writing ACQ out to " << filename.str();
d_dump_file.open(filename.str().c_str(),
std::ios::out | std::ios::binary);
d_dump_file.close();
}
}
if (test_statistics > d_threshold)
{
d_state = 2; // Positive acquisition
// 6.1- Declare positive acquisition using a message port
DLOG(INFO) << "positive acquisition";
DLOG(INFO) << "satellite " << d_gnss_synchro->System << " "
<< d_gnss_synchro->PRN;
DLOG(INFO) << "sample_stamp " << d_sample_counter;
DLOG(INFO) << "test statistics value " << test_statistics;
DLOG(INFO) << "test statistics threshold " << d_threshold;
DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples;
DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz;
DLOG(INFO) << "magnitude " << d_mag;
DLOG(INFO) << "input signal power " << input_power;
d_active = false;
d_state = 0;
acquisition_message = 1;
this->message_port_pub(pmt::mp("events"),
pmt::from_long(acquisition_message));
}
else
{
d_state = 3; // Negative acquisition
// 6.2- Declare negative acquisition using a message port
DLOG(INFO) << "negative acquisition";
DLOG(INFO) << "satellite " << d_gnss_synchro->System << " "
<< d_gnss_synchro->PRN;
DLOG(INFO) << "sample_stamp " << d_sample_counter;
DLOG(INFO) << "test statistics value " << test_statistics;
DLOG(INFO) << "test statistics threshold " << d_threshold;
DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples;
DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz;
DLOG(INFO) << "magnitude " << d_mag;
DLOG(INFO) << "input signal power " << input_power;
d_active = false;
d_state = 0;
acquisition_message = 2;
this->message_port_pub(pmt::mp("events"),
pmt::from_long(acquisition_message));
}
acquisition_fpga_8sc->unblock_samples();
acquisition_fpga_8sc->close_device();
DLOG(INFO) << "Done. Consumed 1 item.";
}
int gps_pcps_acquisition_fpga_sc::general_work(int noutput_items,
gr_vector_int &ninput_items, gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items __attribute__((unused)))
{
// general work not used with the acquisition
return noutput_items;
}