gnss-sdr/src/algorithms/tracking/libs/CN_estimators.cc

142 lines
5.0 KiB
C++

/*!
* \file CN_estimators.cc
* \brief Library with a set of Carrier to Noise estimators and lock detectors.
* SNV_CN0 is a Carrier-to-Noise (CN0) estimator based on the Signal-to-Noise Variance (SNV) estimator [1].
*
* Carrier lock detector using normalised estimate of the cosine
* of twice the carrier phase error [2].
*
*
* [1] Marco Pini, Emanuela Falletti and Maurizio Fantino, "Performance
* Evaluation of C/N0 Estimators using a Real Time GNSS Software Receiver,"
* IEEE 10th International Symposium on Spread Spectrum Techniques and
* Applications, pp.28-30, August 2008.
*
*
*
* [2] Van Dierendonck, A.J. (1996), Global Positioning System: Theory and
* Applications,
* Volume I, Chapter 8: GPS Receivers, AJ Systems, Los Altos, CA 94024.
* Inc.: 329-407.
*
*
* \author Javier Arribas, 2011. jarribas(at)cttc.es
*
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2011 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "CN_estimators.h"
#include "GPS_L1_CA.h"
#include <gnuradio/gr_complex.h>
#include <math.h>
/*!
* Signal-to-Noise (SNR) (\f$\rho\f$) estimator using the Signal-to-Noise Variance (SNV) estimator:
* \f{equation}
* \hat{\rho}=\frac{\hat{P}_s}{\hat{P}_n}=\frac{\hat{P}_s}{\hat{P}_{tot}-\hat{P}_s},
* \f}
* where \f$\hat{P}_s=\left(\frac{1}{N}\sum^{N-1}_{i=0}|Re(Pc(i))|\right)^2\f$ is the estimation of the signal power,
* \f$\hat{P}_{tot}=\frac{1}{N}\sum^{N-1}_{i=0}|Pc(i)|^2\f$ is the estimator of the total power, \f$|\cdot|\f$ is the absolute value,
* \f$Re(\cdot)\f$ stands for the real part of the value, and \f$Pc(i)\f$ is the prompt correlator output for the sample index i.
*
* The SNR value is converted to CN0 [dB-Hz], taking to account the receiver bandwidth and the PRN code gain, using the following formula:
* \f{equation}
* CN0_{dB}=10*log(\hat{\rho})+10*log(\frac{f_s}{2})-10*log(L_{PRN}),
* \f}
* where \f$f_s\f$ is the sampling frequency and \f$L_{PRN}\f$ is the PRN sequence length.
*/
float gps_l1_ca_CN0_SNV(gr_complex* Prompt_buffer, int length, long fs_in)
{
// estimate CN0 using buffered values
// MATLAB CODE
//Psig=((1/N)*sum(abs(imag(x((n-N+1):n)))))^2;
//Ptot=(1/N)*sum(abs(x((n-N+1):n)).^2);
//SNR_SNV(count)=Psig/(Ptot-Psig);
//CN0_SNV_dB=10*log10(SNR_SNV)+10*log10(BW)-10*log10(PRN_length);
float SNR, SNR_dB_Hz;
float tmp_abs_I,tmp_abs_Q;
float Psig,Ptot;
//float M2,M4;
Psig=0;
Ptot=0;
for (int i=0;i<length;i++)
{
tmp_abs_I=std::abs(Prompt_buffer[i].imag());
tmp_abs_Q=std::abs(Prompt_buffer[i].real());
Psig+=tmp_abs_I;
Ptot+=Prompt_buffer[i].imag()*Prompt_buffer[i].imag()+Prompt_buffer[i].real()*Prompt_buffer[i].real();
}
Psig=Psig/(float)length;
Psig=Psig*Psig;
SNR=Psig/(Ptot/(float)length-Psig);
SNR_dB_Hz=10*log10(SNR)+10*log10(fs_in/2)-10*log10(GPS_L1_CA_CODE_LENGTH_CHIPS);
return SNR_dB_Hz;
}
/*!
* The Carrier Phase Lock Detector block uses the normalised estimate of the cosine of twice the carrier phase error is given by
* \f{equation}
* C2\phi=\frac{NBD}{NBP},
* \f}
* where \f$NBD=(\sum^{N-1}_{i=0}|Im(Pc(i))|)^2+(\sum^{N-1}_{i=0}|Re(Pc(i))|)^2\f$,
* \f$NBP=\sum^{N-1}_{i=0}Im(Pc(i))^2-\sum^{N-1}_{i=0}Re(Pc(i))^2\f$, and
* \f$Pc(i)\f$ is the prompt correlator output for the sample index i.
*/
float carrier_lock_detector(gr_complex* Prompt_buffer, int length)
{
/*!
* \todo Code lock detector
*/
// estimate using buffered values
// MATLAB CODE
// lock detector operation
//NBD=sum(abs(imag(x((n-N+1):n))))^2 + sum(abs(real(x((n-N+1):n))))^2;
//NBP=sum(imag(x((n-N+1):n)).^2) - sum(real(x((n-N+1):n)).^2);
//LOCK(count)=NBD/NBP;
float tmp_abs_I,tmp_abs_Q;
float tmp_sum_abs_I,tmp_sum_abs_Q;
float tmp_sum_sqr_I,tmp_sum_sqr_Q;
tmp_sum_abs_I=0;
tmp_sum_abs_Q=0;
tmp_sum_sqr_I=0;
tmp_sum_sqr_Q=0;
float NBD,NBP;
for (int i=0;i<length;i++)
{
tmp_abs_I=std::abs(Prompt_buffer[i].imag());
tmp_abs_Q=std::abs(Prompt_buffer[i].real());
tmp_sum_abs_I+=tmp_abs_I;
tmp_sum_abs_Q+=tmp_abs_Q;
tmp_sum_sqr_I+=(Prompt_buffer[i].imag()*Prompt_buffer[i].imag());
tmp_sum_sqr_Q+=(Prompt_buffer[i].real()*Prompt_buffer[i].real());
}
NBD=tmp_sum_abs_I*tmp_sum_abs_I+tmp_sum_abs_Q*tmp_sum_abs_Q;
NBP=tmp_sum_sqr_I-tmp_sum_sqr_Q;
return NBD/NBP;
}