1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-11-10 20:10:05 +00:00
gnss-sdr/src/algorithms/libs/galileo_e1_signal_processing.cc
Luis Esteve c9a06f702a Major update:
1) Galileo E1 Acquisition adapter block added (Gnuradio block modification to use the same block with the 2 systems with 2 adapters)
2) Tests and signal samples for Galileo E1 Acquisition signal block
3) Library for Galileo E1 signal processing
4) Galileo_E1.h with constant variables for this system

git-svn-id: https://svn.code.sf.net/p/gnss-sdr/code/trunk@209 64b25241-fba3-4117-9849-534c7e92360d
2012-07-12 21:17:37 +00:00

190 lines
6.2 KiB
C++

/*!
* \file galileo_e1_signal_processing.cc
* \brief This library implements various functions for Galileo E1 signals
* \author Luis Esteve, 2012. luis(at)epsilon-formacion.com
*
* Detailed description of the file here if needed.
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2011 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "galileo_e1_signal_processing.h"
void galileo_e1_code_gen_int(int* _dest, char _Signal[3], signed int _prn,
unsigned int _chip_shift)
{
std::string _galileo_signal = _Signal;
signed int prn = _prn - 1;
int* dest = _dest;
/* A simple error check */
if ((_prn < 1) || (_prn > 50))
{
return;
}
if (_galileo_signal.compare("1B") == 0)
{
for (size_t i = 0; i < Galileo_E1_B_PRIMARY_CODE[prn].length(); i++)
{
hex_to_binary_converter(dest,
Galileo_E1_B_PRIMARY_CODE[prn].at(i));
dest = dest + 4;
}
}
else if (_galileo_signal.compare("1C") == 0)
{
for (size_t i = 0; i < Galileo_E1_C_PRIMARY_CODE[prn].length(); i++)
{
hex_to_binary_converter(dest,
Galileo_E1_C_PRIMARY_CODE[prn].at(i));
dest = dest + 4;
}
}
else
{
return;
}
}
void galileo_e1_sinboc_11_gen(std::complex<float>* _dest, int* _prn,
unsigned int _length_out)
{
const unsigned int _length_in = Galileo_E1_B_CODE_LENGTH_CHIPS;
unsigned int _period = (unsigned int) (_length_out / _length_in);
for (unsigned int i = 0; i < _length_in; i++)
{
for (unsigned int j = 0; j < (_period / 2); j++)
_dest[i * _period + j] = std::complex<float>((float) _prn[i],
0.0);
for (unsigned int j = (_period / 2); j < _period; j++)
_dest[i * _period + j] = std::complex<float>((float) (-_prn[i]),
0.0);
}
}
void galileo_e1_sinboc_61_gen(std::complex<float>* _dest, int* _prn,
unsigned int _length_out)
{
const unsigned int _length_in = Galileo_E1_B_CODE_LENGTH_CHIPS;
unsigned int _period = (unsigned int) (_length_out / _length_in);
for (unsigned int i = 0; i < _length_in; i++)
{
for (unsigned int j = 0; j < _period; j += 2)
_dest[i * _period + j] = std::complex<float>((float) _prn[i],
0.0);
for (unsigned int j = 1; j < _period; j += 2)
_dest[i * _period + j] = std::complex<float>((float) (-_prn[i]),
0.0);
}
}
void galileo_e1_gen(std::complex<float>* _dest, int* _prn, char _Signal[3])
{
std::string _galileo_signal = _Signal;
const unsigned int _codeLength = 12 * Galileo_E1_B_CODE_LENGTH_CHIPS;
const float alpha = sqrt(10.0 / 11.0);
const float beta = sqrt(1.0 / 11.0);
std::complex<float> sinboc_11[_codeLength];
std::complex<float> sinboc_61[_codeLength];
galileo_e1_sinboc_11_gen(sinboc_11, _prn, _codeLength); //generate sinboc(1,1) 12 samples per chip
galileo_e1_sinboc_61_gen(sinboc_61, _prn, _codeLength); //generate sinboc(6,1) 12 samples per chip
if (_galileo_signal.compare("1B") == 0)
{
for (unsigned int i = 0; i < _codeLength; i++)
{
_dest[i] = alpha * sinboc_11[i] + beta * sinboc_61[i];
}
}
else if (_galileo_signal.compare("1C") == 0)
{
for (unsigned int i = 0; i < _codeLength; i++)
{
_dest[i] = alpha * sinboc_11[i] - beta * sinboc_61[i];
}
}
else
return;
}
void galileo_e1_code_gen_complex_sampled(std::complex<float>* _dest,
char _Signal[3], bool _cboc, unsigned int _prn, signed int _fs,
unsigned int _chip_shift)
{
// This function is based on the GNU software GPS for MATLAB in the Kay Borre book
unsigned int _samplesPerCode;
const unsigned int _codeFreqBasis = Galileo_E1_CODE_CHIP_RATE_HZ; //Hz
unsigned int _codeLength = Galileo_E1_B_CODE_LENGTH_CHIPS;
int primary_code_E1_chips[_codeLength];
_samplesPerCode = round(_fs / (_codeFreqBasis / _codeLength));
galileo_e1_code_gen_int(primary_code_E1_chips, _Signal, _prn, 0); //generate Galileo E1 code, 1 sample per chip
if (_cboc == true)
{
_codeLength = 12 * Galileo_E1_B_CODE_LENGTH_CHIPS;
std::complex<float> _signal_E1[_codeLength];
galileo_e1_gen(_signal_E1, primary_code_E1_chips, _Signal); //generate cboc 12 samples per chip
resampler(_signal_E1, _dest, 12 * _codeFreqBasis, _fs, _codeLength,
_samplesPerCode); //resamples code to fs
}
else
{
//--- Find number of samples per spreading code ----------------------------
_codeLength = 2 * Galileo_E1_B_CODE_LENGTH_CHIPS;
std::complex<float> _signal_E1[_codeLength];
galileo_e1_sinboc_11_gen(_signal_E1, primary_code_E1_chips,
_codeLength); //generate sinboc(1,1) 2 samples per chip
resampler(_signal_E1, _dest, 2 * _codeFreqBasis, _fs, _codeLength,
_samplesPerCode); //resamples code to fs
}
}