gnss-sdr/src/algorithms/signal_source/adapters/flexiband_signal_source.cc

160 lines
6.1 KiB
C++

/*!
* \file flexiband_signal_source.cc
* \brief ignal Source adapter for the Teleorbit Flexiband front-end device.
* This adapter requires a Flexiband GNU Radio driver
* installed (not included with GNSS-SDR)
* \author Javier Arribas, jarribas(at)cttc.es
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* SPDX-License-Identifier: GPL-3.0-or-later
*
* -------------------------------------------------------------------------
*/
#include "flexiband_signal_source.h"
#include "configuration_interface.h"
#include <glog/logging.h>
#include <gnuradio/blocks/file_sink.h>
#include <teleorbit/frontend.h>
#include <utility>
FlexibandSignalSource::FlexibandSignalSource(const ConfigurationInterface* configuration,
const std::string& role,
unsigned int in_stream,
unsigned int out_stream,
Concurrent_Queue<pmt::pmt_t>* queue __attribute__((unused))) : role_(role), in_stream_(in_stream), out_stream_(out_stream)
{
std::string default_item_type = "byte";
item_type_ = configuration->property(role + ".item_type", default_item_type);
std::string default_firmware_file = "flexiband_I-1b.bit";
firmware_filename_ = configuration->property(role + ".firmware_file", default_firmware_file);
gain1_ = configuration->property(role + ".gain1", 0); // check gain DAC values for Flexiband frontend!
gain2_ = configuration->property(role + ".gain2", 0); // check gain DAC values for Flexiband frontend!
gain3_ = configuration->property(role + ".gain3", 0); // check gain DAC values for Flexiband frontend!
AGC_ = configuration->property(role + ".AGC", true); // enabled AGC by default
flag_read_file = configuration->property(role + ".flag_read_file", false); // disable read samples from file by default
std::string default_signal_file = "flexiband_frame_samples.bin";
signal_file = configuration->property(role + ".signal_file", default_signal_file);
usb_packet_buffer_size_ = configuration->property(role + ".usb_packet_buffer", 128);
n_channels_ = configuration->property(role + ".total_channels", 0);
if (n_channels_ == 0)
{
n_channels_ = configuration->property(role + ".RF_channels", 1);
}
sel_ch_ = configuration->property(role + ".sel_ch", 1);
if (sel_ch_ > n_channels_)
{
LOG(WARNING) << "Invalid RF channel selection";
}
if (item_type_ == "gr_complex")
{
item_size_ = sizeof(gr_complex);
flexiband_source_ = gr::teleorbit::frontend::make(firmware_filename_.c_str(), gain1_, gain2_, gain3_, AGC_, usb_packet_buffer_size_, signal_file.c_str(), flag_read_file);
// create I, Q -> gr_complex type conversion blocks
for (int n = 0; n < (n_channels_ * 2); n++)
{
char_to_float.emplace_back(gr::blocks::char_to_float::make());
}
for (int n = 0; n < n_channels_; n++)
{
float_to_complex_.emplace_back(gr::blocks::float_to_complex::make());
null_sinks_.push_back(gr::blocks::null_sink::make(sizeof(gr_complex)));
}
DLOG(INFO) << "Item size " << item_size_;
DLOG(INFO) << "Firmware file " << firmware_filename_;
DLOG(INFO) << "flexiband_source_(" << flexiband_source_->unique_id() << ")";
}
else
{
LOG(WARNING) << item_type_ << " unrecognized item type for flexiband_source_";
item_size_ = sizeof(gr_complex);
}
if (in_stream_ > 0)
{
LOG(ERROR) << "A signal source does not have an input stream";
}
if (out_stream_ > 1)
{
LOG(ERROR) << "This implementation only supports one output stream";
}
}
void FlexibandSignalSource::connect(gr::top_block_sptr top_block)
{
for (int n = 0; n < (n_channels_ * 2); n++)
{
top_block->connect(flexiband_source_, n, char_to_float.at(n), 0);
DLOG(INFO) << "connected flexiband_source_ to char_to_float CH" << n;
}
for (int n = 0; n < n_channels_; n++)
{
top_block->connect(char_to_float.at(n * 2), 0, float_to_complex_.at(n), 0);
top_block->connect(char_to_float.at(n * 2 + 1), 0, float_to_complex_.at(n), 1);
top_block->connect(float_to_complex_.at(n), 0, null_sinks_.at(n), 0);
DLOG(INFO) << "connected char_to_float to float_to_complex_ CH" << n;
}
}
void FlexibandSignalSource::disconnect(gr::top_block_sptr top_block)
{
for (int n = 0; n < (n_channels_ * 2); n++)
{
top_block->disconnect(flexiband_source_, n, char_to_float.at(n), 0);
DLOG(INFO) << "disconnect flexiband_source_ to char_to_float CH" << n;
}
for (int n = 0; n < n_channels_; n++)
{
top_block->disconnect(char_to_float.at(n * 2), 0, float_to_complex_.at(n), 0);
top_block->disconnect(char_to_float.at(n * 2 + 1), 0, float_to_complex_.at(n), 1);
top_block->disconnect(float_to_complex_.at(n), 0, null_sinks_.at(n), 0);
DLOG(INFO) << "disconnect char_to_float to float_to_complex_ CH" << n;
}
}
gr::basic_block_sptr FlexibandSignalSource::get_left_block()
{
LOG(WARNING) << "Left block of a signal source should not be retrieved";
return gr::block_sptr();
}
gr::basic_block_sptr FlexibandSignalSource::get_right_block()
{
return get_right_block(0);
}
gr::basic_block_sptr FlexibandSignalSource::get_right_block(int RF_channel)
{
if (RF_channel == 0)
{
// in the first RF channel, return the signalsource selected channel.
// this trick enables the use of the second or the third frequency of a FlexiBand signal without a dual frequency configuration
return float_to_complex_.at(sel_ch_ - 1);
}
else
{
return float_to_complex_.at(RF_channel);
}
}