gnss-sdr/src/tests/unit-tests/signal-processing-blocks/tracking/gps_l1_ca_dll_pll_tracking_...

1197 lines
66 KiB
C++

/*!
* \file gps_l1_ca_dll_pll_tracking_test.cc
* \brief This class implements a tracking test for GPS_L1_CA_DLL_PLL_Tracking
* implementation based on some input parameters.
* \author Javier Arribas, 2017. jarribas(at)cttc.es
*
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2012-2019 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* SPDX-License-Identifier: GPL-3.0-or-later
*
* -------------------------------------------------------------------------
*/
#include "GPS_L1_CA.h"
#include "gnss_block_factory.h"
#include "gnuplot_i.h"
#include "in_memory_configuration.h"
#include "signal_generator_flags.h"
#include "test_flags.h"
#include "tracking_dump_reader.h"
#include "tracking_interface.h"
#include "tracking_tests_flags.h"
#include "tracking_true_obs_reader.h"
#include <armadillo>
#include <gnuradio/analog/sig_source_waveform.h>
#include <gnuradio/blocks/file_source.h>
#include <gnuradio/blocks/interleaved_char_to_complex.h>
#include <gnuradio/blocks/null_sink.h>
#include <gnuradio/blocks/skiphead.h>
#include <gnuradio/top_block.h>
#include <gtest/gtest.h>
#include <matio.h>
#include <chrono>
#include <unistd.h>
#include <utility>
#include <vector>
#if HAS_GENERIC_LAMBDA
#else
#include <boost/bind/bind.hpp>
#endif
#ifdef GR_GREATER_38
#include <gnuradio/analog/sig_source.h>
#else
#include <gnuradio/analog/sig_source_c.h>
#endif
#if HAS_STD_FILESYSTEM
#if HAS_STD_FILESYSTEM_EXPERIMENTAL
#include <experimental/filesystem>
namespace fs = std::experimental::filesystem;
#else
#include <filesystem>
namespace fs = std::filesystem;
#endif
#else
#include <boost/filesystem.hpp>
namespace fs = boost::filesystem;
#endif
#if GNURADIO_USES_STD_POINTERS
#include <memory>
#else
#include <boost/shared_ptr.hpp>
#endif
// ######## GNURADIO BLOCK MESSAGE RECEVER #########
class GpsL1CADllPllTrackingTest_msg_rx;
#if GNURADIO_USES_STD_POINTERS
using GpsL1CADllPllTrackingTest_msg_rx_sptr = std::shared_ptr<GpsL1CADllPllTrackingTest_msg_rx>;
#else
using GpsL1CADllPllTrackingTest_msg_rx_sptr = boost::shared_ptr<GpsL1CADllPllTrackingTest_msg_rx>;
#endif
GpsL1CADllPllTrackingTest_msg_rx_sptr GpsL1CADllPllTrackingTest_msg_rx_make();
class GpsL1CADllPllTrackingTest_msg_rx : public gr::block
{
private:
friend GpsL1CADllPllTrackingTest_msg_rx_sptr GpsL1CADllPllTrackingTest_msg_rx_make();
void msg_handler_events(pmt::pmt_t msg);
GpsL1CADllPllTrackingTest_msg_rx();
public:
int rx_message;
~GpsL1CADllPllTrackingTest_msg_rx(); //!< Default destructor
};
GpsL1CADllPllTrackingTest_msg_rx_sptr GpsL1CADllPllTrackingTest_msg_rx_make()
{
return GpsL1CADllPllTrackingTest_msg_rx_sptr(new GpsL1CADllPllTrackingTest_msg_rx());
}
void GpsL1CADllPllTrackingTest_msg_rx::msg_handler_events(pmt::pmt_t msg)
{
try
{
int64_t message = pmt::to_long(std::move(msg));
rx_message = message; // 3 -> loss of lock
// std::cout << "Received trk message: " << rx_message << std::endl;
}
catch (boost::bad_any_cast& e)
{
LOG(WARNING) << "msg_handler_telemetry Bad any cast!";
rx_message = 0;
}
}
GpsL1CADllPllTrackingTest_msg_rx::GpsL1CADllPllTrackingTest_msg_rx() : gr::block("GpsL1CADllPllTrackingTest_msg_rx", gr::io_signature::make(0, 0, 0), gr::io_signature::make(0, 0, 0))
{
this->message_port_register_in(pmt::mp("events"));
this->set_msg_handler(pmt::mp("events"),
#if HAS_GENERIC_LAMBDA
[this](auto&& PH1) { msg_handler_events(PH1); });
#else
#if BOOST_173_OR_GREATER
boost::bind(&GpsL1CADllPllTrackingTest_msg_rx::msg_handler_events, this, boost::placeholders::_1));
#else
boost::bind(&GpsL1CADllPllTrackingTest_msg_rx::msg_handler_events, this, _1));
#endif
#endif
rx_message = 0;
}
GpsL1CADllPllTrackingTest_msg_rx::~GpsL1CADllPllTrackingTest_msg_rx() = default;
// ###########################################################
class GpsL1CADllPllTrackingTest : public ::testing::Test
{
public:
std::string generator_binary;
std::string p1;
std::string p2;
std::string p3;
std::string p4;
std::string p5;
std::string p6;
std::string implementation = "GPS_L1_CA_DLL_PLL_Tracking";
const int baseband_sampling_freq = FLAGS_fs_gen_sps;
std::string filename_rinex_obs = FLAGS_filename_rinex_obs;
std::string filename_raw_data = FLAGS_filename_raw_data;
int configure_generator(double CN0_dBHz, int file_idx);
int generate_signal();
std::vector<double> check_results_doppler(arma::vec& true_time_s,
arma::vec& true_value,
arma::vec& meas_time_s,
arma::vec& meas_value,
double& mean_error,
double& std_dev_error,
double& rmse);
std::vector<double> check_results_acc_carrier_phase(arma::vec& true_time_s,
arma::vec& true_value,
arma::vec& meas_time_s,
arma::vec& meas_value,
double& mean_error,
double& std_dev_error,
double& rmse);
std::vector<double> check_results_codephase(arma::vec& true_time_s,
arma::vec& true_value,
arma::vec& meas_time_s,
arma::vec& meas_value,
double& mean_error,
double& std_dev_error,
double& rmse);
bool save_mat_xy(std::vector<double>& x, std::vector<double>& y, std::string filename);
GpsL1CADllPllTrackingTest()
{
factory = std::make_shared<GNSSBlockFactory>();
config = std::make_shared<InMemoryConfiguration>();
item_size = sizeof(gr_complex);
gnss_synchro = Gnss_Synchro();
}
~GpsL1CADllPllTrackingTest() = default;
void configure_receiver(double PLL_wide_bw_hz,
double DLL_wide_bw_hz,
double PLL_narrow_bw_hz,
double DLL_narrow_bw_hz,
int extend_correlation_symbols);
gr::top_block_sptr top_block;
std::shared_ptr<GNSSBlockFactory> factory;
std::shared_ptr<InMemoryConfiguration> config;
Gnss_Synchro gnss_synchro;
size_t item_size;
};
int GpsL1CADllPllTrackingTest::configure_generator(double CN0_dBHz, int file_idx)
{
// Configure signal generator
generator_binary = FLAGS_generator_binary;
p1 = std::string("-rinex_nav_file=") + FLAGS_rinex_nav_file;
if (FLAGS_dynamic_position.empty())
{
p2 = std::string("-static_position=") + FLAGS_static_position + std::string(",") + std::to_string(FLAGS_duration * 10);
}
else
{
p2 = std::string("-obs_pos_file=") + std::string(FLAGS_dynamic_position);
}
p3 = std::string("-rinex_obs_file=") + FLAGS_filename_rinex_obs; // RINEX 2.10 observation file output
p4 = std::string("-sig_out_file=") + FLAGS_filename_raw_data + std::to_string(file_idx); // Baseband signal output file. Will be stored in int8_t IQ multiplexed samples
p5 = std::string("-sampling_freq=") + std::to_string(baseband_sampling_freq); // Baseband sampling frequency [MSps]
p6 = std::string("-CN0_dBHz=") + std::to_string(CN0_dBHz); // Signal generator CN0
return 0;
}
int GpsL1CADllPllTrackingTest::generate_signal()
{
int child_status;
char* const parmList[] = {&generator_binary[0], &generator_binary[0], &p1[0], &p2[0], &p3[0], &p4[0], &p5[0], &p6[0], nullptr};
int pid;
if ((pid = fork()) == -1)
{
perror("fork err");
}
else if (pid == 0)
{
execv(&generator_binary[0], parmList);
std::cout << "Return not expected. Must be an execv err." << std::endl;
std::terminate();
}
waitpid(pid, &child_status, 0);
std::cout << "Signal and Observables RINEX and RAW files created." << std::endl;
return 0;
}
void GpsL1CADllPllTrackingTest::configure_receiver(
double PLL_wide_bw_hz,
double DLL_wide_bw_hz,
double PLL_narrow_bw_hz,
double DLL_narrow_bw_hz,
int extend_correlation_symbols)
{
gnss_synchro.Channel_ID = 0;
gnss_synchro.System = 'G';
std::string signal = "1C";
signal.copy(gnss_synchro.Signal, 2, 0);
gnss_synchro.PRN = FLAGS_test_satellite_PRN;
config = std::make_shared<InMemoryConfiguration>();
config->set_property("GNSS-SDR.internal_fs_sps", std::to_string(baseband_sampling_freq));
// Set Tracking
config->set_property("Tracking_1C.implementation", implementation);
config->set_property("Tracking_1C.item_type", "gr_complex");
config->set_property("Tracking_1C.pll_bw_hz", std::to_string(PLL_wide_bw_hz));
config->set_property("Tracking_1C.dll_bw_hz", std::to_string(DLL_wide_bw_hz));
config->set_property("Tracking_1C.early_late_space_chips", "0.5");
config->set_property("Tracking_1C.extend_correlation_symbols", std::to_string(extend_correlation_symbols));
config->set_property("Tracking_1C.pll_bw_narrow_hz", std::to_string(PLL_narrow_bw_hz));
config->set_property("Tracking_1C.dll_bw_narrow_hz", std::to_string(DLL_narrow_bw_hz));
config->set_property("Tracking_1C.early_late_space_narrow_chips", "0.5");
config->set_property("Tracking_1C.dump", "true");
config->set_property("Tracking_1C.dump_filename", "./tracking_ch_");
std::cout << "*****************************************\n";
std::cout << "*** Tracking configuration parameters ***\n";
std::cout << "*****************************************\n";
std::cout << "pll_bw_hz: " << config->property("Tracking_1C.pll_bw_hz", 0.0) << " Hz\n";
std::cout << "dll_bw_hz: " << config->property("Tracking_1C.dll_bw_hz", 0.0) << " Hz\n";
std::cout << "pll_bw_narrow_hz: " << config->property("Tracking_1C.pll_bw_narrow_hz", 0.0) << " Hz\n";
std::cout << "dll_bw_narrow_hz: " << config->property("Tracking_1C.dll_bw_narrow_hz", 0.0) << " Hz\n";
std::cout << "extend_correlation_symbols: " << config->property("Tracking_1C.extend_correlation_symbols", 0) << " Symbols\n";
std::cout << "*****************************************\n";
std::cout << "*****************************************\n";
}
std::vector<double> GpsL1CADllPllTrackingTest::check_results_doppler(arma::vec& true_time_s,
arma::vec& true_value,
arma::vec& meas_time_s,
arma::vec& meas_value,
double& mean_error,
double& std_dev_error,
double& rmse)
{
// 1. True value interpolation to match the measurement times
arma::vec true_value_interp;
arma::uvec true_time_s_valid = find(true_time_s > 0);
true_time_s = true_time_s(true_time_s_valid);
true_value = true_value(true_time_s_valid);
arma::uvec meas_time_s_valid = find(meas_time_s > 0);
meas_time_s = meas_time_s(meas_time_s_valid);
meas_value = meas_value(meas_time_s_valid);
arma::interp1(true_time_s, true_value, meas_time_s, true_value_interp);
// 2. RMSE
arma::vec err;
err = meas_value - true_value_interp;
// conversion between arma::vec and std:vector
std::vector<double> err_std_vector(err.colptr(0), err.colptr(0) + err.n_rows);
arma::vec err2 = arma::square(err);
rmse = sqrt(arma::mean(err2));
// 3. Mean err and variance
double error_mean = arma::mean(err);
double error_var = arma::var(err);
mean_error = error_mean;
std_dev_error = sqrt(error_var);
// 4. Peaks
double max_error = arma::max(err);
double min_error = arma::min(err);
// 5. report
std::streamsize ss = std::cout.precision();
std::cout << std::setprecision(10) << "TRK Doppler RMSE=" << rmse
<< ", mean=" << error_mean
<< ", stdev=" << sqrt(error_var) << " (max,min)=" << max_error << "," << min_error << " [Hz]" << std::endl;
std::cout.precision(ss);
return err_std_vector;
}
std::vector<double> GpsL1CADllPllTrackingTest::check_results_acc_carrier_phase(arma::vec& true_time_s,
arma::vec& true_value,
arma::vec& meas_time_s,
arma::vec& meas_value,
double& mean_error,
double& std_dev_error,
double& rmse)
{
// 1. True value interpolation to match the measurement times
arma::vec true_value_interp;
arma::uvec true_time_s_valid = find(true_time_s > 0);
true_time_s = true_time_s(true_time_s_valid);
true_value = true_value(true_time_s_valid);
arma::uvec meas_time_s_valid = find(meas_time_s > 0);
meas_time_s = meas_time_s(meas_time_s_valid);
meas_value = meas_value(meas_time_s_valid);
arma::interp1(true_time_s, true_value, meas_time_s, true_value_interp);
// 2. RMSE
arma::vec err;
// it is required to remove the initial offset in the accumulated carrier phase error
err = (meas_value - meas_value(0)) - (true_value_interp - true_value_interp(0));
arma::vec err2 = arma::square(err);
// conversion between arma::vec and std:vector
std::vector<double> err_std_vector(err.colptr(0), err.colptr(0) + err.n_rows);
rmse = sqrt(arma::mean(err2));
// 3. Mean err and variance
double error_mean = arma::mean(err);
double error_var = arma::var(err);
mean_error = error_mean;
std_dev_error = sqrt(error_var);
// 4. Peaks
double max_error = arma::max(err);
double min_error = arma::min(err);
// 5. report
std::streamsize ss = std::cout.precision();
std::cout << std::setprecision(10) << "TRK acc carrier phase RMSE=" << rmse
<< ", mean=" << error_mean
<< ", stdev=" << sqrt(error_var) << " (max,min)=" << max_error << "," << min_error << " [Hz]" << std::endl;
std::cout.precision(ss);
return err_std_vector;
}
std::vector<double> GpsL1CADllPllTrackingTest::check_results_codephase(arma::vec& true_time_s,
arma::vec& true_value,
arma::vec& meas_time_s,
arma::vec& meas_value,
double& mean_error,
double& std_dev_error,
double& rmse)
{
// 1. True value interpolation to match the measurement times
arma::vec true_value_interp;
arma::uvec true_time_s_valid = find(true_time_s > 0);
true_time_s = true_time_s(true_time_s_valid);
true_value = true_value(true_time_s_valid);
arma::uvec meas_time_s_valid = find(meas_time_s > 0);
meas_time_s = meas_time_s(meas_time_s_valid);
meas_value = meas_value(meas_time_s_valid);
arma::interp1(true_time_s, true_value, meas_time_s, true_value_interp);
// 2. RMSE
arma::vec err;
err = meas_value - true_value_interp;
// conversion between arma::vec and std:vector
std::vector<double> err_std_vector(err.colptr(0), err.colptr(0) + err.n_rows);
arma::vec err2 = arma::square(err);
rmse = sqrt(arma::mean(err2));
// 3. Mean err and variance
double error_mean = arma::mean(err);
double error_var = arma::var(err);
mean_error = error_mean;
std_dev_error = sqrt(error_var);
// 4. Peaks
double max_error = arma::max(err);
double min_error = arma::min(err);
// 5. report
std::streamsize ss = std::cout.precision();
std::cout << std::setprecision(10) << "TRK code phase RMSE=" << rmse
<< ", mean=" << error_mean
<< ", stdev=" << sqrt(error_var) << " (max,min)=" << max_error << "," << min_error << " [Chips]" << std::endl;
std::cout.precision(ss);
return err_std_vector;
}
TEST_F(GpsL1CADllPllTrackingTest, ValidationOfResults)
{
// *************************************************
// ***** STEP 2: Prepare the parameters sweep ******
// *************************************************
std::vector<double> generator_CN0_values;
// data containers for config param sweep
std::vector<std::vector<double>> mean_doppler_error_sweep; // swep config param and cn0 sweep
std::vector<std::vector<double>> std_dev_doppler_error_sweep; // swep config param and cn0 sweep
std::vector<std::vector<double>> rmse_doppler_sweep; // swep config param and cn0 sweep
std::vector<std::vector<double>> mean_code_phase_error_sweep; // swep config param and cn0 sweep
std::vector<std::vector<double>> std_dev_code_phase_error_sweep; // swep config param and cn0 sweep
std::vector<std::vector<double>> rmse_code_phase_sweep; // swep config param and cn0 sweep
std::vector<std::vector<double>> mean_carrier_phase_error_sweep; // swep config param and cn0 sweep
std::vector<std::vector<double>> std_dev_carrier_phase_error_sweep; // swep config param and cn0 sweep
std::vector<std::vector<double>> rmse_carrier_phase_sweep; // swep config param and cn0 sweep
std::vector<std::vector<double>> trk_valid_timestamp_s_sweep;
std::vector<std::vector<double>> generator_CN0_values_sweep_copy;
int test_satellite_PRN = 0;
double acq_delay_samples = 0.0;
double acq_doppler_hz = 0.0;
Tracking_True_Obs_Reader true_obs_data;
// CONFIG PARAM SWEEP LOOP
std::vector<double> PLL_wide_bw_values;
std::vector<double> DLL_wide_bw_values;
// ***********************************************************
// ***** STEP 2: Tracking configuration parameters sweep *****
// ***********************************************************
if (FLAGS_PLL_bw_hz_start == FLAGS_PLL_bw_hz_stop)
{
if (FLAGS_DLL_bw_hz_start == FLAGS_DLL_bw_hz_stop)
{
// NO PLL/DLL BW sweep
PLL_wide_bw_values.push_back(FLAGS_PLL_bw_hz_start);
DLL_wide_bw_values.push_back(FLAGS_DLL_bw_hz_start);
}
else
{
// DLL BW Sweep
for (double dll_bw = FLAGS_DLL_bw_hz_start; dll_bw >= FLAGS_DLL_bw_hz_stop; dll_bw = dll_bw - FLAGS_DLL_bw_hz_step)
{
PLL_wide_bw_values.push_back(FLAGS_PLL_bw_hz_start);
DLL_wide_bw_values.push_back(dll_bw);
}
}
}
else
{
// PLL BW Sweep
for (double pll_bw = FLAGS_PLL_bw_hz_start; pll_bw >= FLAGS_PLL_bw_hz_stop; pll_bw = pll_bw - FLAGS_PLL_bw_hz_step)
{
PLL_wide_bw_values.push_back(pll_bw);
DLL_wide_bw_values.push_back(FLAGS_DLL_bw_hz_start);
}
}
// *********************************************
// ***** STEP 3: Generate the input signal *****
// *********************************************
std::vector<double> cno_vector;
if (FLAGS_CN0_dBHz_start == FLAGS_CN0_dBHz_stop)
{
generator_CN0_values.push_back(FLAGS_CN0_dBHz_start);
}
else
{
for (double cn0 = FLAGS_CN0_dBHz_start; cn0 > FLAGS_CN0_dBHz_stop; cn0 = cn0 - FLAGS_CN0_dB_step)
{
generator_CN0_values.push_back(cn0);
}
}
// use generator or use an external capture file
if (FLAGS_enable_external_signal_file)
{
// todo: create and configure an acquisition block and perform an acquisition to obtain the synchronization parameters
}
else
{
for (unsigned int current_cn0_idx = 0; current_cn0_idx < generator_CN0_values.size(); current_cn0_idx++)
{
// Configure the signal generator
configure_generator(generator_CN0_values.at(current_cn0_idx), current_cn0_idx);
// Generate signal raw signal samples and observations RINEX file
if (FLAGS_disable_generator == false)
{
generate_signal();
}
// open true observables log file written by the simulator
}
}
// ************************************************************
// ***** STEP 4: Configure the signal tracking parameters *****
// ************************************************************
for (unsigned int config_idx = 0; config_idx < PLL_wide_bw_values.size(); config_idx++)
{
// CN0 LOOP
// data containers for CN0 sweep
std::vector<std::vector<double>> prompt_sweep;
std::vector<std::vector<double>> early_sweep;
std::vector<std::vector<double>> late_sweep;
std::vector<std::vector<double>> promptI_sweep;
std::vector<std::vector<double>> promptQ_sweep;
std::vector<std::vector<double>> CN0_dBHz_sweep;
std::vector<std::vector<double>> trk_timestamp_s_sweep;
std::vector<std::vector<double>> doppler_error_sweep;
std::vector<std::vector<double>> code_phase_error_sweep;
std::vector<std::vector<double>> code_phase_error_meters_sweep;
std::vector<std::vector<double>> acc_carrier_phase_error_sweep;
std::vector<double> mean_doppler_error;
std::vector<double> std_dev_doppler_error;
std::vector<double> rmse_doppler;
std::vector<double> mean_code_phase_error;
std::vector<double> std_dev_code_phase_error;
std::vector<double> rmse_code_phase;
std::vector<double> mean_carrier_phase_error;
std::vector<double> std_dev_carrier_phase_error;
std::vector<double> rmse_carrier_phase;
std::vector<double> valid_CN0_values;
configure_receiver(PLL_wide_bw_values.at(config_idx),
DLL_wide_bw_values.at(config_idx),
FLAGS_PLL_narrow_bw_hz,
FLAGS_DLL_narrow_bw_hz,
FLAGS_extend_correlation_symbols);
for (unsigned int current_cn0_idx = 0; current_cn0_idx < generator_CN0_values.size(); current_cn0_idx++)
{
// ******************************************************************************************
// ***** Obtain the initial signal sinchronization parameters (emulating an acquisition) ****
// ******************************************************************************************
if (!FLAGS_enable_external_signal_file)
{
test_satellite_PRN = FLAGS_test_satellite_PRN;
std::string true_obs_file = std::string("./gps_l1_ca_obs_prn");
true_obs_file.append(std::to_string(test_satellite_PRN));
true_obs_file.append(".dat");
true_obs_data.close_obs_file();
ASSERT_EQ(true_obs_data.open_obs_file(true_obs_file), true) << "Failure opening true observables file";
// load acquisition data based on the first epoch of the true observations
ASSERT_EQ(true_obs_data.read_binary_obs(), true)
<< "Failure reading true tracking dump file." << std::endl
<< "Maybe sat PRN #" + std::to_string(FLAGS_test_satellite_PRN) +
" is not available?";
std::cout << "Testing satellite PRN=" << test_satellite_PRN << std::endl;
std::cout << "Initial Doppler [Hz]=" << true_obs_data.doppler_l1_hz << " Initial code delay [Chips]=" << true_obs_data.prn_delay_chips << std::endl;
acq_doppler_hz = true_obs_data.doppler_l1_hz;
acq_delay_samples = (GPS_L1_CA_CODE_LENGTH_CHIPS - true_obs_data.prn_delay_chips / GPS_L1_CA_CODE_LENGTH_CHIPS) * static_cast<double>(baseband_sampling_freq) * GPS_L1_CA_CODE_PERIOD_S;
// restart the epoch counter
true_obs_data.restart();
}
std::chrono::time_point<std::chrono::system_clock> start, end;
top_block = gr::make_top_block("Tracking test");
std::shared_ptr<GNSSBlockInterface> trk_ = factory->GetBlock(config, "Tracking_1C", implementation, 1, 1);
std::shared_ptr<TrackingInterface> tracking = std::dynamic_pointer_cast<TrackingInterface>(trk_);
auto msg_rx = GpsL1CADllPllTrackingTest_msg_rx_make();
gnss_synchro.Acq_delay_samples = acq_delay_samples;
gnss_synchro.Acq_doppler_hz = acq_doppler_hz;
gnss_synchro.Acq_samplestamp_samples = 0;
ASSERT_NO_THROW({
tracking->set_channel(gnss_synchro.Channel_ID);
}) << "Failure setting channel.";
ASSERT_NO_THROW({
tracking->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro.";
ASSERT_NO_THROW({
tracking->connect(top_block);
}) << "Failure connecting tracking to the top_block.";
ASSERT_NO_THROW({
std::string file = "./" + filename_raw_data + std::to_string(current_cn0_idx);
const char* file_name = file.c_str();
gr::blocks::file_source::sptr file_source = gr::blocks::file_source::make(sizeof(int8_t), file_name, false);
gr::blocks::interleaved_char_to_complex::sptr gr_interleaved_char_to_complex = gr::blocks::interleaved_char_to_complex::make();
gr::blocks::null_sink::sptr sink = gr::blocks::null_sink::make(sizeof(Gnss_Synchro));
top_block->connect(file_source, 0, gr_interleaved_char_to_complex, 0);
top_block->connect(gr_interleaved_char_to_complex, 0, tracking->get_left_block(), 0);
top_block->connect(tracking->get_right_block(), 0, sink, 0);
top_block->msg_connect(tracking->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of tracking test.";
// ********************************************************************
// ***** STEP 5: Perform the signal tracking and read the results *****
// ********************************************************************
std::cout << "------------ START TRACKING -------------" << std::endl;
tracking->start_tracking();
EXPECT_NO_THROW({
start = std::chrono::system_clock::now();
top_block->run(); // Start threads and wait
end = std::chrono::system_clock::now();
}) << "Failure running the top_block.";
std::chrono::duration<double> elapsed_seconds = end - start;
std::cout << "Signal tracking completed in " << elapsed_seconds.count() << " seconds" << std::endl;
int tracking_last_msg = msg_rx->rx_message; // save last aasynchronous tracking message in order to detect a loss of lock
// check results
// load the measured values
Tracking_Dump_Reader trk_dump;
ASSERT_EQ(trk_dump.open_obs_file(std::string("./tracking_ch_0.dat")), true)
<< "Failure opening tracking dump file";
int64_t n_measured_epochs = trk_dump.num_epochs();
// std::cout << "Measured observation epochs=" << n_measured_epochs << std::endl;
arma::vec trk_timestamp_s = arma::zeros(n_measured_epochs, 1);
arma::vec trk_acc_carrier_phase_cycles = arma::zeros(n_measured_epochs, 1);
arma::vec trk_Doppler_Hz = arma::zeros(n_measured_epochs, 1);
arma::vec trk_prn_delay_chips = arma::zeros(n_measured_epochs, 1);
int64_t epoch_counter = 0;
std::vector<double> timestamp_s;
std::vector<double> prompt;
std::vector<double> early;
std::vector<double> late;
std::vector<double> promptI;
std::vector<double> promptQ;
std::vector<double> CN0_dBHz;
while (trk_dump.read_binary_obs())
{
trk_timestamp_s(epoch_counter) = static_cast<double>(trk_dump.PRN_start_sample_count) / static_cast<double>(baseband_sampling_freq);
trk_acc_carrier_phase_cycles(epoch_counter) = trk_dump.acc_carrier_phase_rad / GPS_TWO_PI;
trk_Doppler_Hz(epoch_counter) = trk_dump.carrier_doppler_hz;
double delay_chips = GPS_L1_CA_CODE_LENGTH_CHIPS - GPS_L1_CA_CODE_LENGTH_CHIPS * (fmod((static_cast<double>(trk_dump.PRN_start_sample_count) + trk_dump.aux1) / static_cast<double>(baseband_sampling_freq), 1.0e-3) / 1.0e-3);
trk_prn_delay_chips(epoch_counter) = delay_chips;
timestamp_s.push_back(trk_timestamp_s(epoch_counter));
prompt.push_back(trk_dump.abs_P);
early.push_back(trk_dump.abs_E);
late.push_back(trk_dump.abs_L);
promptI.push_back(trk_dump.prompt_I);
promptQ.push_back(trk_dump.prompt_Q);
CN0_dBHz.push_back(trk_dump.CN0_SNV_dB_Hz);
epoch_counter++;
}
trk_timestamp_s_sweep.push_back(timestamp_s);
prompt_sweep.push_back(prompt);
early_sweep.push_back(early);
late_sweep.push_back(late);
promptI_sweep.push_back(promptI);
promptQ_sweep.push_back(promptQ);
CN0_dBHz_sweep.push_back(CN0_dBHz);
// ***********************************************************
// ***** STEP 6: Compare with true values (if available) *****
// ***********************************************************
if (!FLAGS_enable_external_signal_file)
{
std::vector<double> doppler_error_hz;
std::vector<double> code_phase_error_chips;
std::vector<double> code_phase_error_meters;
std::vector<double> acc_carrier_phase_hz;
try
{
// load the true values
int64_t n_true_epochs = true_obs_data.num_epochs();
// std::cout << "True observation epochs=" << n_true_epochs << std::endl;
arma::vec true_timestamp_s = arma::zeros(n_true_epochs, 1);
arma::vec true_acc_carrier_phase_cycles = arma::zeros(n_true_epochs, 1);
arma::vec true_Doppler_Hz = arma::zeros(n_true_epochs, 1);
arma::vec true_prn_delay_chips = arma::zeros(n_true_epochs, 1);
arma::vec true_tow_s = arma::zeros(n_true_epochs, 1);
epoch_counter = 0;
while (true_obs_data.read_binary_obs())
{
true_timestamp_s(epoch_counter) = true_obs_data.signal_timestamp_s;
true_acc_carrier_phase_cycles(epoch_counter) = true_obs_data.acc_carrier_phase_cycles;
true_Doppler_Hz(epoch_counter) = true_obs_data.doppler_l1_hz;
true_prn_delay_chips(epoch_counter) = true_obs_data.prn_delay_chips;
true_tow_s(epoch_counter) = true_obs_data.tow;
epoch_counter++;
}
// Align initial measurements and cut the tracking pull-in transitory
double pull_in_offset_s = FLAGS_skip_trk_transitory_s;
arma::uvec initial_meas_point = arma::find(trk_timestamp_s >= (true_timestamp_s(0) + pull_in_offset_s), 1, "first");
if (!initial_meas_point.empty() and tracking_last_msg != 3)
{
trk_timestamp_s = trk_timestamp_s.subvec(initial_meas_point(0), trk_timestamp_s.size() - 1);
trk_acc_carrier_phase_cycles = trk_acc_carrier_phase_cycles.subvec(initial_meas_point(0), trk_acc_carrier_phase_cycles.size() - 1);
trk_Doppler_Hz = trk_Doppler_Hz.subvec(initial_meas_point(0), trk_Doppler_Hz.size() - 1);
trk_prn_delay_chips = trk_prn_delay_chips.subvec(initial_meas_point(0), trk_prn_delay_chips.size() - 1);
double mean_error;
double std_dev_error;
double rmse;
valid_CN0_values.push_back(generator_CN0_values.at(current_cn0_idx)); // save the current cn0 value (valid tracking)
doppler_error_hz = check_results_doppler(true_timestamp_s, true_Doppler_Hz, trk_timestamp_s, trk_Doppler_Hz, mean_error, std_dev_error, rmse);
mean_doppler_error.push_back(mean_error);
std_dev_doppler_error.push_back(std_dev_error);
rmse_doppler.push_back(rmse);
code_phase_error_chips = check_results_codephase(true_timestamp_s, true_prn_delay_chips, trk_timestamp_s, trk_prn_delay_chips, mean_error, std_dev_error, rmse);
for (double code_phase_error_chip : code_phase_error_chips)
{
code_phase_error_meters.push_back(GPS_L1_CA_CHIP_PERIOD_S * code_phase_error_chip * GPS_C_M_S);
}
mean_code_phase_error.push_back(mean_error);
std_dev_code_phase_error.push_back(std_dev_error);
rmse_code_phase.push_back(rmse);
acc_carrier_phase_hz = check_results_acc_carrier_phase(true_timestamp_s, true_acc_carrier_phase_cycles, trk_timestamp_s, trk_acc_carrier_phase_cycles, mean_error, std_dev_error, rmse);
mean_carrier_phase_error.push_back(mean_error);
std_dev_carrier_phase_error.push_back(std_dev_error);
rmse_carrier_phase.push_back(rmse);
// save tracking measurement timestamps to std::vector
std::vector<double> vector_trk_timestamp_s(trk_timestamp_s.colptr(0), trk_timestamp_s.colptr(0) + trk_timestamp_s.n_rows);
trk_valid_timestamp_s_sweep.push_back(vector_trk_timestamp_s);
doppler_error_sweep.push_back(doppler_error_hz);
code_phase_error_sweep.push_back(code_phase_error_chips);
code_phase_error_meters_sweep.push_back(code_phase_error_meters);
acc_carrier_phase_error_sweep.push_back(acc_carrier_phase_hz);
}
else
{
std::cout << "Tracking output could not be used, possible loss of lock " << std::endl;
}
}
catch (const std::exception& ex)
{
std::cout << "Tracking output could not be used, possible loss of lock " << ex.what() << std::endl;
}
}
} // CN0 LOOP
if (!FLAGS_enable_external_signal_file)
{
mean_doppler_error_sweep.push_back(mean_doppler_error);
std_dev_doppler_error_sweep.push_back(std_dev_doppler_error);
rmse_doppler_sweep.push_back(rmse_doppler);
mean_code_phase_error_sweep.push_back(mean_code_phase_error);
std_dev_code_phase_error_sweep.push_back(std_dev_code_phase_error);
rmse_code_phase_sweep.push_back(rmse_code_phase);
mean_carrier_phase_error_sweep.push_back(mean_carrier_phase_error);
std_dev_carrier_phase_error_sweep.push_back(std_dev_carrier_phase_error);
rmse_carrier_phase_sweep.push_back(rmse_carrier_phase);
// make a copy of the CN0 vector for each configuration parameter in order to filter the loss of lock events
generator_CN0_values_sweep_copy.push_back(valid_CN0_values);
}
// ********************************
// ***** STEP 7: Plot results *****
// ********************************
if (FLAGS_plot_gps_l1_tracking_test == true)
{
const std::string gnuplot_executable(FLAGS_gnuplot_executable);
if (gnuplot_executable.empty())
{
std::cout << "WARNING: Although the flag plot_gps_l1_tracking_test has been set to TRUE," << std::endl;
std::cout << "gnuplot has not been found in your system." << std::endl;
std::cout << "Test results will not be plotted." << std::endl;
}
else
{
try
{
fs::path p(gnuplot_executable);
fs::path dir = p.parent_path();
const std::string& gnuplot_path = dir.native();
Gnuplot::set_GNUPlotPath(gnuplot_path);
auto decimate = static_cast<unsigned int>(FLAGS_plot_decimate);
if (FLAGS_plot_detail_level >= 2)
{
for (unsigned int current_cn0_idx = 0; current_cn0_idx < generator_CN0_values.size(); current_cn0_idx++)
{
Gnuplot g1("linespoints");
if (FLAGS_show_plots)
{
g1.showonscreen(); // window output
}
else
{
g1.disablescreen();
}
g1.set_title(std::to_string(generator_CN0_values.at(current_cn0_idx)) + " dB-Hz, " + "PLL/DLL BW: " + std::to_string(PLL_wide_bw_values.at(config_idx)) + "," + std::to_string(DLL_wide_bw_values.at(config_idx)) + " Hz" + "GPS L1 C/A (PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
g1.set_grid();
g1.set_xlabel("Time [s]");
g1.set_ylabel("Correlators' output");
// g1.cmd("set key box opaque");
g1.plot_xy(trk_timestamp_s_sweep.at(current_cn0_idx), prompt_sweep.at(current_cn0_idx), "Prompt", decimate);
g1.plot_xy(trk_timestamp_s_sweep.at(current_cn0_idx), early_sweep.at(current_cn0_idx), "Early", decimate);
g1.plot_xy(trk_timestamp_s_sweep.at(current_cn0_idx), late_sweep.at(current_cn0_idx), "Late", decimate);
g1.set_legend();
g1.savetops("Correlators_outputs" + std::to_string(generator_CN0_values.at(current_cn0_idx)));
g1.savetopdf("Correlators_outputs" + std::to_string(generator_CN0_values.at(current_cn0_idx)), 18);
}
Gnuplot g2("points");
if (FLAGS_show_plots)
{
g2.showonscreen(); // window output
}
else
{
g2.disablescreen();
}
g2.set_multiplot(ceil(static_cast<float>(generator_CN0_values.size()) / 2.0),
ceil(static_cast<float>(generator_CN0_values.size()) / 2));
for (unsigned int current_cn0_idx = 0; current_cn0_idx < generator_CN0_values.size(); current_cn0_idx++)
{
g2.reset_plot();
g2.set_title(std::to_string(generator_CN0_values.at(current_cn0_idx)) + " dB-Hz Constellation " + "PLL/DLL BW: " + std::to_string(PLL_wide_bw_values.at(config_idx)) + "," + std::to_string(DLL_wide_bw_values.at(config_idx)) + " Hz" + "GPS L1 C/A (PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
g2.set_grid();
g2.set_xlabel("Inphase");
g2.set_ylabel("Quadrature");
// g2.cmd("set size ratio -1");
g2.plot_xy(promptI_sweep.at(current_cn0_idx), promptQ_sweep.at(current_cn0_idx));
}
g2.unset_multiplot();
g2.savetops("Constellation");
g2.savetopdf("Constellation", 18);
Gnuplot g3("linespoints");
g3.set_title("GPS L1 C/A tracking CN0 output (PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
g3.set_grid();
g3.set_xlabel("Time [s]");
g3.set_ylabel("Reported CN0 [dB-Hz]");
g3.cmd("set key box opaque");
for (unsigned int current_cn0_idx = 0; current_cn0_idx < generator_CN0_values.size(); current_cn0_idx++)
{
g3.plot_xy(trk_timestamp_s_sweep.at(current_cn0_idx), CN0_dBHz_sweep.at(current_cn0_idx),
std::to_string(static_cast<int>(round(generator_CN0_values.at(current_cn0_idx)))) + "[dB-Hz]", decimate);
}
g3.set_legend();
g3.savetops("CN0_output");
g3.savetopdf("CN0_output", 18);
if (FLAGS_show_plots)
{
g3.showonscreen(); // window output
}
else
{
g3.disablescreen();
}
}
// PLOT ERROR FIGURES (only if it is used the signal generator)
if (!FLAGS_enable_external_signal_file)
{
if (FLAGS_plot_detail_level >= 1)
{
Gnuplot g5("points");
if (FLAGS_show_plots)
{
g5.showonscreen(); // window output
}
else
{
g5.disablescreen();
}
g5.set_title("Code delay error, PLL/DLL BW: " + std::to_string(PLL_wide_bw_values.at(config_idx)) + "," + std::to_string(DLL_wide_bw_values.at(config_idx)) + " Hz (PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
g5.set_grid();
g5.set_xlabel("Time [s]");
g5.set_ylabel("Code delay error [Chips]");
for (unsigned int current_cn0_idx = 0; current_cn0_idx < generator_CN0_values_sweep_copy.at(config_idx).size(); current_cn0_idx++)
{
try
{
g5.plot_xy(trk_valid_timestamp_s_sweep.at(current_cn0_idx), code_phase_error_sweep.at(current_cn0_idx),
std::to_string(static_cast<int>(round(generator_CN0_values_sweep_copy.at(config_idx).at(current_cn0_idx)))) + "[dB-Hz]", decimate);
}
catch (const GnuplotException& ge)
{
}
save_mat_xy(trk_valid_timestamp_s_sweep.at(current_cn0_idx),
code_phase_error_sweep.at(current_cn0_idx),
"Code_error_chips" + std::to_string(generator_CN0_values_sweep_copy.at(config_idx).at(current_cn0_idx)) +
std::to_string(PLL_wide_bw_values.at(config_idx)) + "_" + std::to_string(DLL_wide_bw_values.at(config_idx)));
}
g5.set_legend();
g5.set_legend();
g5.savetops("Code_error_chips");
g5.savetopdf("Code_error_chips", 18);
Gnuplot g5b("points");
if (FLAGS_show_plots)
{
g5b.showonscreen(); // window output
}
else
{
g5b.disablescreen();
}
g5b.set_title("Code delay error, PLL/DLL BW: " + std::to_string(PLL_wide_bw_values.at(config_idx)) + "," + std::to_string(DLL_wide_bw_values.at(config_idx)) + " Hz (PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
g5b.set_grid();
g5b.set_xlabel("Time [s]");
g5b.set_ylabel("Code delay error [meters]");
for (unsigned int current_cn0_idx = 0; current_cn0_idx < generator_CN0_values_sweep_copy.at(config_idx).size(); current_cn0_idx++)
{
try
{
g5b.plot_xy(trk_valid_timestamp_s_sweep.at(current_cn0_idx), code_phase_error_meters_sweep.at(current_cn0_idx),
std::to_string(static_cast<int>(round(generator_CN0_values_sweep_copy.at(config_idx).at(current_cn0_idx)))) + "[dB-Hz]", decimate);
}
catch (const GnuplotException& ge)
{
}
save_mat_xy(trk_valid_timestamp_s_sweep.at(current_cn0_idx),
code_phase_error_sweep.at(current_cn0_idx),
"Code_error_meters" + std::to_string(generator_CN0_values_sweep_copy.at(config_idx).at(current_cn0_idx)) +
std::to_string(PLL_wide_bw_values.at(config_idx)) + "_" + std::to_string(DLL_wide_bw_values.at(config_idx)));
}
g5b.set_legend();
g5b.set_legend();
g5b.savetops("Code_error_meters");
g5b.savetopdf("Code_error_meters", 18);
Gnuplot g6("points");
if (FLAGS_show_plots)
{
g6.showonscreen(); // window output
}
else
{
g6.disablescreen();
}
g6.set_title("Accumulated carrier phase error, PLL/DLL BW: " + std::to_string(PLL_wide_bw_values.at(config_idx)) + "," + std::to_string(DLL_wide_bw_values.at(config_idx)) + " Hz (PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
g6.set_grid();
g6.set_xlabel("Time [s]");
g6.set_ylabel("Accumulated carrier phase error [Cycles]");
for (unsigned int current_cn0_idx = 0; current_cn0_idx < generator_CN0_values_sweep_copy.at(config_idx).size(); current_cn0_idx++)
{
try
{
g6.plot_xy(trk_valid_timestamp_s_sweep.at(current_cn0_idx), acc_carrier_phase_error_sweep.at(current_cn0_idx),
std::to_string(static_cast<int>(round(generator_CN0_values_sweep_copy.at(config_idx).at(current_cn0_idx)))) + "[dB-Hz]", decimate);
}
catch (const GnuplotException& ge)
{
}
save_mat_xy(trk_valid_timestamp_s_sweep.at(current_cn0_idx),
acc_carrier_phase_error_sweep.at(current_cn0_idx),
"Carrier_phase_error" + std::to_string(generator_CN0_values_sweep_copy.at(config_idx).at(current_cn0_idx)) +
std::to_string(PLL_wide_bw_values.at(config_idx)) + "_" + std::to_string(DLL_wide_bw_values.at(config_idx)));
}
g6.set_legend();
g6.set_legend();
g6.savetops("Acc_carrier_phase_error_cycles");
g6.savetopdf("Acc_carrier_phase_error_cycles", 18);
Gnuplot g4("points");
if (FLAGS_show_plots)
{
g4.showonscreen(); // window output
}
else
{
g4.disablescreen();
}
g4.set_multiplot(ceil(static_cast<float>(generator_CN0_values.size()) / 2.0),
ceil(static_cast<float>(generator_CN0_values.size()) / 2));
for (unsigned int current_cn0_idx = 0; current_cn0_idx < generator_CN0_values_sweep_copy.at(config_idx).size(); current_cn0_idx++)
{
g4.reset_plot();
g4.set_title("Dopper error" + std::to_string(static_cast<int>(round(generator_CN0_values_sweep_copy.at(config_idx).at(current_cn0_idx)))) + "[dB-Hz], PLL/DLL BW: " + std::to_string(PLL_wide_bw_values.at(config_idx)) + "," + std::to_string(DLL_wide_bw_values.at(config_idx)) + " Hz (PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
g4.set_grid();
// g4.cmd("set key box opaque");
g4.set_xlabel("Time [s]");
g4.set_ylabel("Dopper error [Hz]");
try
{
g4.plot_xy(trk_valid_timestamp_s_sweep.at(current_cn0_idx), doppler_error_sweep.at(current_cn0_idx),
std::to_string(static_cast<int>(round(generator_CN0_values_sweep_copy.at(config_idx).at(current_cn0_idx)))) + "[dB-Hz]", decimate);
}
catch (const GnuplotException& ge)
{
}
save_mat_xy(trk_valid_timestamp_s_sweep.at(current_cn0_idx),
doppler_error_sweep.at(current_cn0_idx),
"Doppler_error" + std::to_string(generator_CN0_values_sweep_copy.at(config_idx).at(current_cn0_idx)) +
std::to_string(PLL_wide_bw_values.at(config_idx)) + "_" + std::to_string(DLL_wide_bw_values.at(config_idx)));
}
g4.unset_multiplot();
g4.savetops("Doppler_error_hz");
g4.savetopdf("Doppler_error_hz", 18);
}
}
}
catch (const GnuplotException& ge)
{
std::cout << ge.what() << std::endl;
}
}
}
}
if (FLAGS_plot_gps_l1_tracking_test == true)
{
std::cout << "Plotting performance metrics..." << std::endl;
try
{
if (generator_CN0_values.size() > 1)
{
// plot metrics
Gnuplot g7("linespoints");
if (FLAGS_show_plots)
{
g7.showonscreen(); // window output
}
else
{
g7.disablescreen();
}
g7.set_title("Doppler error metrics (PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
g7.set_grid();
g7.set_xlabel("CN0 [dB-Hz]");
g7.set_ylabel("Doppler error [Hz]");
g7.set_pointsize(2);
g7.cmd("set termoption lw 2");
g7.cmd("set key box opaque");
for (unsigned int config_sweep_idx = 0; config_sweep_idx < mean_doppler_error_sweep.size(); config_sweep_idx++)
{
g7.plot_xy_err(generator_CN0_values_sweep_copy.at(config_sweep_idx),
mean_doppler_error_sweep.at(config_sweep_idx),
std_dev_doppler_error_sweep.at(config_sweep_idx),
"PLL/DLL BW: " + std::to_string(PLL_wide_bw_values.at(config_sweep_idx)) +
+"," + std::to_string(DLL_wide_bw_values.at(config_sweep_idx)) + " Hz");
// matlab save
save_mat_xy(generator_CN0_values_sweep_copy.at(config_sweep_idx),
rmse_doppler_sweep.at(config_sweep_idx),
"RMSE_Doppler_CN0_Sweep_PLL_DLL" + std::to_string(PLL_wide_bw_values.at(config_sweep_idx)) +
+"_" + std::to_string(DLL_wide_bw_values.at(config_sweep_idx)));
}
g7.savetops("Doppler_error_metrics");
g7.savetopdf("Doppler_error_metrics", 18);
Gnuplot g8("linespoints");
g8.set_title("Accumulated carrier phase error metrics (PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
g8.set_grid();
g8.set_xlabel("CN0 [dB-Hz]");
g8.set_ylabel("Accumulated Carrier Phase error [Cycles]");
g8.cmd("set key box opaque");
g8.cmd("set termoption lw 2");
g8.set_pointsize(2);
for (unsigned int config_sweep_idx = 0; config_sweep_idx < mean_doppler_error_sweep.size(); config_sweep_idx++)
{
g8.plot_xy_err(generator_CN0_values_sweep_copy.at(config_sweep_idx),
mean_carrier_phase_error_sweep.at(config_sweep_idx),
std_dev_carrier_phase_error_sweep.at(config_sweep_idx),
"PLL/DLL BW: " + std::to_string(PLL_wide_bw_values.at(config_sweep_idx)) +
+"," + std::to_string(DLL_wide_bw_values.at(config_sweep_idx)) + " Hz");
// matlab save
save_mat_xy(generator_CN0_values_sweep_copy.at(config_sweep_idx),
rmse_carrier_phase_sweep.at(config_sweep_idx),
"RMSE_Carrier_Phase_CN0_Sweep_PLL_DLL" + std::to_string(PLL_wide_bw_values.at(config_sweep_idx)) +
+"_" + std::to_string(DLL_wide_bw_values.at(config_sweep_idx)));
}
g8.savetops("Carrier_error_metrics");
g8.savetopdf("Carrier_error_metrics", 18);
Gnuplot g9("linespoints");
g9.set_title("Code Phase error metrics (PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
g9.set_grid();
g9.set_xlabel("CN0 [dB-Hz]");
g9.set_ylabel("Code Phase error [Chips]");
g9.cmd("set key box opaque");
g9.cmd("set termoption lw 2");
g9.set_pointsize(2);
for (unsigned int config_sweep_idx = 0; config_sweep_idx < mean_doppler_error_sweep.size(); config_sweep_idx++)
{
g9.plot_xy_err(generator_CN0_values_sweep_copy.at(config_sweep_idx),
mean_code_phase_error_sweep.at(config_sweep_idx),
std_dev_code_phase_error_sweep.at(config_sweep_idx),
"PLL/DLL BW: " + std::to_string(PLL_wide_bw_values.at(config_sweep_idx)) +
+"," + std::to_string(DLL_wide_bw_values.at(config_sweep_idx)) + " Hz");
// matlab save
save_mat_xy(generator_CN0_values_sweep_copy.at(config_sweep_idx),
rmse_code_phase_sweep.at(config_sweep_idx),
"RMSE_Code_Phase_CN0_Sweep_PLL_DLL" + std::to_string(PLL_wide_bw_values.at(config_sweep_idx)) +
+"_" + std::to_string(DLL_wide_bw_values.at(config_sweep_idx)));
}
g9.savetops("Code_error_metrics");
g9.savetopdf("Code_error_metrics", 18);
}
}
catch (const GnuplotException& ge)
{
std::cout << ge.what() << std::endl;
}
}
}
bool GpsL1CADllPllTrackingTest::save_mat_xy(std::vector<double>& x, std::vector<double>& y, std::string filename)
{
try
{
// WRITE MAT FILE
mat_t* matfp;
matvar_t* matvar;
filename.erase(filename.length() - 4, 4);
filename.append(".mat");
matfp = Mat_CreateVer(filename.c_str(), nullptr, MAT_FT_MAT73);
if (reinterpret_cast<int64_t*>(matfp) != nullptr)
{
size_t dims[2] = {1, x.size()};
matvar = Mat_VarCreate("x", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, &x[0], 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("y", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, &y[0], 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
}
Mat_Close(matfp);
return true;
}
catch (const std::exception& ex)
{
return false;
}
}