gnss-sdr/src/tests/unit-tests/signal-processing-blocks/acquisition/gps_l1_ca_pcps_acquisition_...

374 lines
13 KiB
C++

/*!
* \file gps_l1_ca_pcps_acquisition_test.cc
* \brief This class implements an acquisition test for
* GpsL1CaPcpsAcquisition class based on some input parameters.
* \author Luis Esteve, 2012. luis(at)epsilon-formacion.com
*
*
* -----------------------------------------------------------------------------
*
* GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
* This file is part of GNSS-SDR.
*
* Copyright (C) 2010-2020 (see AUTHORS file for a list of contributors)
* SPDX-License-Identifier: GPL-3.0-or-later
*
* -----------------------------------------------------------------------------
*/
#include "GPS_L1_CA.h"
#include "acquisition_dump_reader.h"
#include "concurrent_queue.h"
#include "gnss_block_interface.h"
#include "gnss_sdr_valve.h"
#include "gnss_synchro.h"
#include "gnuplot_i.h"
#include "gps_l1_ca_pcps_acquisition.h"
#include "in_memory_configuration.h"
#include "test_flags.h"
#include <glog/logging.h>
#include <gnuradio/analog/sig_source_waveform.h>
#include <gnuradio/blocks/file_source.h>
#include <gnuradio/blocks/null_sink.h>
#include <gnuradio/top_block.h>
#include <gtest/gtest.h>
#include <chrono>
#include <memory>
#include <utility>
#if HAS_GENERIC_LAMBDA
#else
#include <boost/bind/bind.hpp>
#endif
#ifdef GR_GREATER_38
#include <gnuradio/analog/sig_source.h>
#else
#include <gnuradio/analog/sig_source_c.h>
#endif
#if HAS_STD_FILESYSTEM
#if HAS_STD_FILESYSTEM_EXPERIMENTAL
#include <experimental/filesystem>
namespace fs = std::experimental::filesystem;
#else
#include <filesystem>
namespace fs = std::filesystem;
#endif
#else
#include <boost/filesystem.hpp>
namespace fs = boost::filesystem;
#endif
// ######## GNURADIO BLOCK MESSAGE RECEVER #########
class GpsL1CaPcpsAcquisitionTest_msg_rx;
using GpsL1CaPcpsAcquisitionTest_msg_rx_sptr = gnss_shared_ptr<GpsL1CaPcpsAcquisitionTest_msg_rx>;
GpsL1CaPcpsAcquisitionTest_msg_rx_sptr GpsL1CaPcpsAcquisitionTest_msg_rx_make();
class GpsL1CaPcpsAcquisitionTest_msg_rx : public gr::block
{
private:
friend GpsL1CaPcpsAcquisitionTest_msg_rx_sptr GpsL1CaPcpsAcquisitionTest_msg_rx_make();
void msg_handler_channel_events(const pmt::pmt_t &msg);
GpsL1CaPcpsAcquisitionTest_msg_rx();
public:
int rx_message;
~GpsL1CaPcpsAcquisitionTest_msg_rx() override; //!< Default destructor
};
GpsL1CaPcpsAcquisitionTest_msg_rx_sptr GpsL1CaPcpsAcquisitionTest_msg_rx_make()
{
return GpsL1CaPcpsAcquisitionTest_msg_rx_sptr(new GpsL1CaPcpsAcquisitionTest_msg_rx());
}
void GpsL1CaPcpsAcquisitionTest_msg_rx::msg_handler_channel_events(const pmt::pmt_t &msg)
{
try
{
int64_t message = pmt::to_long(msg);
rx_message = message;
}
catch (const boost::bad_any_cast &e)
{
LOG(WARNING) << "msg_handler_channel_events Bad any_cast: " << e.what();
rx_message = 0;
}
}
GpsL1CaPcpsAcquisitionTest_msg_rx::GpsL1CaPcpsAcquisitionTest_msg_rx() : gr::block("GpsL1CaPcpsAcquisitionTest_msg_rx", gr::io_signature::make(0, 0, 0), gr::io_signature::make(0, 0, 0))
{
this->message_port_register_in(pmt::mp("events"));
this->set_msg_handler(pmt::mp("events"),
#if HAS_GENERIC_LAMBDA
[this](auto &&PH1) { msg_handler_channel_events(PH1); });
#else
#if USE_BOOST_BIND_PLACEHOLDERS
boost::bind(&GpsL1CaPcpsAcquisitionTest_msg_rx::msg_handler_channel_events, this, boost::placeholders::_1));
#else
boost::bind(&GpsL1CaPcpsAcquisitionTest_msg_rx::msg_handler_channel_events, this, _1));
#endif
#endif
rx_message = 0;
}
GpsL1CaPcpsAcquisitionTest_msg_rx::~GpsL1CaPcpsAcquisitionTest_msg_rx() = default;
// ###########################################################
class GpsL1CaPcpsAcquisitionTest : public ::testing::Test
{
protected:
GpsL1CaPcpsAcquisitionTest()
{
config = std::make_shared<InMemoryConfiguration>();
item_size = sizeof(gr_complex);
gnss_synchro = Gnss_Synchro();
doppler_max = 5000;
doppler_step = 100;
}
~GpsL1CaPcpsAcquisitionTest() override = default;
void init();
void plot_grid() const;
gr::top_block_sptr top_block;
std::shared_ptr<InMemoryConfiguration> config;
Gnss_Synchro gnss_synchro{};
size_t item_size;
unsigned int doppler_max;
unsigned int doppler_step;
};
void GpsL1CaPcpsAcquisitionTest::init()
{
gnss_synchro.Channel_ID = 0;
gnss_synchro.System = 'G';
std::string signal = "1C";
signal.copy(gnss_synchro.Signal, 2, 0);
gnss_synchro.PRN = 1;
config->set_property("GNSS-SDR.internal_fs_sps", "4000000");
config->set_property("Acquisition_1C.implementation", "GPS_L1_CA_PCPS_Acquisition");
config->set_property("Acquisition_1C.item_type", "gr_complex");
config->set_property("Acquisition_1C.coherent_integration_time_ms", "1");
if (FLAGS_plot_acq_grid == true)
{
config->set_property("Acquisition_1C.dump", "true");
}
else
{
config->set_property("Acquisition_1C.dump", "false");
}
config->set_property("Acquisition_1C.dump_filename", "./tmp-acq-gps1/acquisition");
config->set_property("Acquisition_1C.dump_channel", "1");
config->set_property("Acquisition_1C.threshold", "0.00001");
config->set_property("Acquisition_1C.doppler_max", std::to_string(doppler_max));
config->set_property("Acquisition_1C.doppler_step", std::to_string(doppler_step));
config->set_property("Acquisition_1C.repeat_satellite", "false");
// config->set_property("Acquisition_1C.pfa", "0.0");
}
void GpsL1CaPcpsAcquisitionTest::plot_grid() const
{
// load the measured values
std::string basename = "./tmp-acq-gps1/acquisition_G_1C";
auto sat = static_cast<unsigned int>(gnss_synchro.PRN);
auto samples_per_code = static_cast<unsigned int>(round(4000000 / (GPS_L1_CA_CODE_RATE_CPS / GPS_L1_CA_CODE_LENGTH_CHIPS))); // !!
Acquisition_Dump_Reader acq_dump(basename, sat, doppler_max, doppler_step, samples_per_code, 1);
if (!acq_dump.read_binary_acq())
{
std::cout << "Error reading files\n";
}
std::vector<int> *doppler = &acq_dump.doppler;
std::vector<unsigned int> *samples = &acq_dump.samples;
std::vector<std::vector<float> > *mag = &acq_dump.mag;
const std::string gnuplot_executable(FLAGS_gnuplot_executable);
if (gnuplot_executable.empty())
{
std::cout << "WARNING: Although the flag plot_acq_grid has been set to TRUE,\n";
std::cout << "gnuplot has not been found in your system.\n";
std::cout << "Test results will not be plotted.\n";
}
else
{
std::cout << "Plotting the acquisition grid. This can take a while...\n";
try
{
fs::path p(gnuplot_executable);
fs::path dir = p.parent_path();
const std::string &gnuplot_path = dir.native();
Gnuplot::set_GNUPlotPath(gnuplot_path);
Gnuplot g1("lines");
if (FLAGS_show_plots)
{
g1.showonscreen(); // window output
}
else
{
g1.disablescreen();
}
g1.set_title("GPS L1 C/A signal acquisition for satellite PRN #" + std::to_string(gnss_synchro.PRN));
g1.set_xlabel("Doppler [Hz]");
g1.set_ylabel("Sample");
// g1.cmd("set view 60, 105, 1, 1");
g1.plot_grid3d(*doppler, *samples, *mag);
g1.savetops("GPS_L1_acq_grid");
g1.savetopdf("GPS_L1_acq_grid");
}
catch (const GnuplotException &ge)
{
std::cout << ge.what() << '\n';
}
}
std::string data_str = "./tmp-acq-gps1";
if (fs::exists(data_str))
{
fs::remove_all(data_str);
}
}
TEST_F(GpsL1CaPcpsAcquisitionTest /*unused*/, Instantiate /*unused*/)
{
std::shared_ptr<GpsL1CaPcpsAcquisition> acquisition = std::make_shared<GpsL1CaPcpsAcquisition>(config.get(), "Acquisition_1C", 1, 0);
}
TEST_F(GpsL1CaPcpsAcquisitionTest /*unused*/, ConnectAndRun /*unused*/)
{
int fs_in = 4000000;
int nsamples = 4000;
std::chrono::time_point<std::chrono::system_clock> start;
std::chrono::time_point<std::chrono::system_clock> end;
std::chrono::duration<double> elapsed_seconds(0);
std::shared_ptr<Concurrent_Queue<pmt::pmt_t> > queue = std::make_shared<Concurrent_Queue<pmt::pmt_t> >();
top_block = gr::make_top_block("Acquisition test");
init();
gnss_shared_ptr<GpsL1CaPcpsAcquisition> acquisition = gnss_make_shared<GpsL1CaPcpsAcquisition>(config.get(), "Acquisition_1C", 1, 0);
gnss_shared_ptr<GpsL1CaPcpsAcquisitionTest_msg_rx> msg_rx = GpsL1CaPcpsAcquisitionTest_msg_rx_make();
ASSERT_NO_THROW({
acquisition->connect(top_block);
auto source = gr::analog::sig_source_c::make(fs_in, gr::analog::GR_SIN_WAVE, 1000, 1, gr_complex(0));
auto valve = gnss_sdr_make_valve(sizeof(gr_complex), nsamples, queue.get());
top_block->connect(source, 0, valve, 0);
top_block->connect(valve, 0, acquisition->get_left_block(), 0);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of acquisition test.";
EXPECT_NO_THROW({
start = std::chrono::system_clock::now();
top_block->run(); // Start threads and wait
end = std::chrono::system_clock::now();
elapsed_seconds = end - start;
}) << "Failure running the top_block.";
std::cout << "Processed " << nsamples << " samples in " << elapsed_seconds.count() * 1e6 << " microseconds\n";
}
TEST_F(GpsL1CaPcpsAcquisitionTest /*unused*/, ValidationOfResults /*unused*/)
{
std::chrono::time_point<std::chrono::system_clock> start;
std::chrono::time_point<std::chrono::system_clock> end;
std::chrono::duration<double> elapsed_seconds(0.0);
top_block = gr::make_top_block("Acquisition test");
double expected_delay_samples = 524;
double expected_doppler_hz = 1680;
init();
if (FLAGS_plot_acq_grid == true)
{
std::string data_str = "./tmp-acq-gps1";
if (fs::exists(data_str))
{
fs::remove_all(data_str);
}
fs::create_directory(data_str);
}
auto acquisition = gnss_make_shared<GpsL1CaPcpsAcquisition>(config.get(), "Acquisition_1C", 1, 0);
auto msg_rx = GpsL1CaPcpsAcquisitionTest_msg_rx_make();
ASSERT_NO_THROW({
acquisition->set_channel(1);
}) << "Failure setting channel.";
ASSERT_NO_THROW({
acquisition->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro.";
ASSERT_NO_THROW({
acquisition->set_threshold(0.001);
}) << "Failure setting threshold.";
ASSERT_NO_THROW({
acquisition->set_doppler_max(doppler_max);
}) << "Failure setting doppler_max.";
ASSERT_NO_THROW({
acquisition->set_doppler_step(doppler_step);
}) << "Failure setting doppler_step.";
ASSERT_NO_THROW({
acquisition->connect(top_block);
}) << "Failure connecting acquisition to the top_block.";
ASSERT_NO_THROW({
std::string path = std::string(TEST_PATH);
std::string file = path + "signal_samples/GPS_L1_CA_ID_1_Fs_4Msps_2ms.dat";
const char *file_name = file.c_str();
gr::blocks::file_source::sptr file_source = gr::blocks::file_source::make(sizeof(gr_complex), file_name, false);
top_block->connect(file_source, 0, acquisition->get_left_block(), 0);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of acquisition test.";
acquisition->set_local_code();
acquisition->set_state(1); // Ensure that acquisition starts at the first sample
acquisition->init();
EXPECT_NO_THROW({
start = std::chrono::system_clock::now();
top_block->run(); // Start threads and wait
end = std::chrono::system_clock::now();
elapsed_seconds = end - start;
}) << "Failure running the top_block.";
uint64_t nsamples = gnss_synchro.Acq_samplestamp_samples;
std::cout << "Acquired " << nsamples << " samples in " << elapsed_seconds.count() * 1e6 << " microseconds\n";
ASSERT_EQ(1, msg_rx->rx_message) << "Acquisition failure. Expected message: 1=ACQ SUCCESS.";
double delay_error_samples = std::abs(expected_delay_samples - gnss_synchro.Acq_delay_samples);
auto delay_error_chips = static_cast<float>(delay_error_samples * 1023 / 4000);
double doppler_error_hz = std::abs(expected_doppler_hz - gnss_synchro.Acq_doppler_hz);
EXPECT_LE(doppler_error_hz, 666) << "Doppler error exceeds the expected value: 666 Hz = 2/(3*integration period)";
EXPECT_LT(delay_error_chips, 0.5) << "Delay error exceeds the expected value: 0.5 chips";
if (FLAGS_plot_acq_grid == true)
{
plot_grid();
}
}