1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-01-05 15:00:33 +00:00
gnss-sdr/tests/unit-tests/signal-processing-blocks/osnma/osnma_test_vectors.cc

672 lines
36 KiB
C++

/*!
* \file osmna_test_vectors.cc
* \brief Tests for the osnma_msg_receiver class.
* \author Carles Fernandez, 2023-2024. cfernandez(at)cttc.es
* Cesare Ghionoiu Martinez, 2023-2024. c.ghionoiu-martinez@tu-braunschweig.de
*
*
* -----------------------------------------------------------------------------
*
* GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
* This file is part of GNSS-SDR.
*
* Copyright (C) 2010-2024 (see AUTHORS file for a list of contributors)
* SPDX-License-Identifier: GPL-3.0-or-later
*
* -----------------------------------------------------------------------------
*/
#include "gnss_crypto.h"
#include "osnma_msg_receiver.h"
#include <gtest/gtest.h>
#include <bitset>
#include <chrono>
#include <fstream>
#include <vector>
#if USE_GLOG_AND_GFLAGS
#include <glog/logging.h> // for LOG
#else
#include <absl/log/log.h>
#endif
struct TestVector
{
int svId;
int numNavBits;
std::vector<uint8_t> navBits;
};
class OsnmaTestVectors : public ::testing::Test
{
protected:
std::vector<uint8_t> parseNavBits(const std::string& hex);
std::vector<TestVector> readTestVectorsFromFile(const std::string& filename);
std::string bytes_to_str(const std::vector<uint8_t>& bytes);
std::vector<uint8_t> extract_page_bytes(const TestVector& tv, int byte_index, int num_bytes);
bool feedOsnmaWithTestVectors(osnma_msg_receiver_sptr osnma_object, std::vector<std::vector<TestVector>> testVectors, std::vector<std::tm> startTimesFiles);
void set_time(std::tm& input);
void SetUp() override
{
}
uint32_t d_GST_SIS{};
uint32_t TOW{};
uint32_t WN{};
std::tm GST_START_EPOCH = {0, 0, 0, 22, 8 - 1, 1999 - 1900, 0, 0, 0, 0, 0}; // months start with 0 and years since 1900 in std::tm
const uint32_t LEAP_SECONDS = 0;
const int SIZE_PAGE_BYTES{240 / 8}; // total bytes of a page
const int SIZE_SUBFRAME_PAGES{15}; // number of pages of a subframe
const int DURATION_SUBFRAME{30}; // duration of a subframe, in seconds// 13 + 5;
bool d_flag_NPK{false}; // flag for NPK, new MT will be set when the new Kroot is received.
};
TEST_F(OsnmaTestVectors, NominalTestConf1)
{
// Arrange
std::string crtFilePath = std::string(BASE_OSNMA_TEST_VECTORS) + "cryptographic_material/Merkle_tree_1/PublicKey/OSNMA_PublicKey_20230803105952_newPKID_1.crt";
std::string merkleFilePath = std::string(BASE_OSNMA_TEST_VECTORS) + "cryptographic_material/Merkle_tree_1/MerkleTree/OSNMA_MerkleTree_20230803105953_newPKID_1.xml";
osnma_msg_receiver_sptr osnma = osnma_msg_receiver_make(crtFilePath, merkleFilePath);
std::tm input_time = {0, 0, 5, 16, 8 - 1, 2023 - 1900, 0, 0, 0, 0, 0};
std::vector<std::tm> input_times = {input_time};
std::vector<TestVector> testVector = readTestVectorsFromFile(std::string(BASE_OSNMA_TEST_VECTORS) + "osnma_test_vectors/configuration_1/16_AUG_2023_GST_05_00_01.csv");
if (testVector.empty())
{
ASSERT_TRUE(false);
}
std::vector<std::vector<TestVector>> testVectors = {testVector};
// Act
bool result = feedOsnmaWithTestVectors(osnma, testVectors, input_times);
ASSERT_TRUE(result);
// Assert
LOG(INFO) << "Successful tags count= " << osnma->d_count_successful_tags;
LOG(INFO) << "Failed tags count= " << osnma->d_count_failed_tags;
LOG(INFO) << "Unverified tags count= " << osnma->d_tags_awaiting_verify.size();
LOG(INFO) << "Failed Kroot count= " << osnma->d_count_failed_Kroot;
LOG(INFO) << "Failed PK count= " << osnma->d_count_failed_pubKey;
LOG(INFO) << "Failed MACSEQ count= " << osnma->d_count_failed_macseq;
ASSERT_EQ(osnma->d_count_failed_tags, 0);
ASSERT_EQ(osnma->d_count_failed_Kroot, 0);
ASSERT_EQ(osnma->d_count_failed_pubKey, 0);
ASSERT_EQ(osnma->d_count_failed_macseq, 0);
}
TEST_F(OsnmaTestVectors, NominalTestConf2)
{
// Arrange
std::string crtFilePath = std::string(BASE_OSNMA_TEST_VECTORS) + "cryptographic_material/Merkle_tree_2/PublicKey/OSNMA_PublicKey_20230720113300_newPKID_2.crt"; // conf. 2
std::string merkleFilePath = std::string(BASE_OSNMA_TEST_VECTORS) + "cryptographic_material/Merkle_tree_2/MerkleTree/OSNMA_MerkleTree_20230720113300_newPKID_2.xml";
osnma_msg_receiver_sptr osnma = osnma_msg_receiver_make(crtFilePath, merkleFilePath);
std::tm input_time = {0, 0, 0, 27, 7 - 1, 2023 - 1900, 0, 0, 0, 0, 0}; // conf. 2
std::vector<std::tm> input_times = {input_time};
std::vector<TestVector> testVector = readTestVectorsFromFile(std::string(BASE_OSNMA_TEST_VECTORS) + "osnma_test_vectors/configuration_2/27_JUL_2023_GST_00_00_01.csv");
if (testVector.empty())
{
ASSERT_TRUE(false);
}
std::vector<std::vector<TestVector>> testVectors = {testVector};
// Act
bool result = feedOsnmaWithTestVectors(osnma, testVectors, input_times);
ASSERT_TRUE(result);
// Assert
LOG(INFO) << "Successful tags count= " << osnma->d_count_successful_tags;
LOG(INFO) << "Failed tags count= " << osnma->d_count_failed_tags;
LOG(INFO) << "Unverified tags count= " << osnma->d_tags_awaiting_verify.size();
LOG(INFO) << "Failed Kroot count= " << osnma->d_count_failed_Kroot;
LOG(INFO) << "Failed PK count= " << osnma->d_count_failed_pubKey;
LOG(INFO) << "Failed MACSEQ count= " << osnma->d_count_failed_macseq;
ASSERT_EQ(osnma->d_count_failed_tags, 0);
ASSERT_EQ(osnma->d_count_failed_Kroot, 0);
ASSERT_EQ(osnma->d_count_failed_pubKey, 0);
ASSERT_EQ(osnma->d_count_failed_macseq, 0);
}
TEST_F(OsnmaTestVectors, PublicKeyRenewal)
{
// Arrange
std::string crtFilePath = std::string(BASE_OSNMA_TEST_VECTORS) + "cryptographic_material/Merkle_tree_2/PublicKey/OSNMA_PublicKey_20231007041500_PKID_7.crt";
std::string merkleFilePath = std::string(BASE_OSNMA_TEST_VECTORS) + "cryptographic_material/Merkle_tree_2/MerkleTree/OSNMA_MerkleTree_20231007041500_PKID_7.xml";
osnma_msg_receiver_sptr osnma = osnma_msg_receiver_make(crtFilePath, merkleFilePath);
std::tm input_time_step1 = {0, 45, 2, 7, 10 - 1, 2023 - 1900, 0, 0, 0, 0, 0};
std::tm input_time_step2 = {0, 45, 3, 7, 10 - 1, 2023 - 1900, 0, 0, 0, 0, 0};
std::tm input_time_step3 = {0, 45, 4, 7, 10 - 1, 2023 - 1900, 0, 0, 0, 0, 0};
std::vector<std::tm> input_times = {input_time_step1, input_time_step2, input_time_step3};
std::vector<TestVector> testVectors_step1 = readTestVectorsFromFile(std::string(BASE_OSNMA_TEST_VECTORS) + "osnma_test_vectors/npk_step1/07_OCT_2023_GST_02_45_01.csv");
std::vector<TestVector> testVectors_step2 = readTestVectorsFromFile(std::string(BASE_OSNMA_TEST_VECTORS) + "osnma_test_vectors/npk_step2/07_OCT_2023_GST_03_45_01.csv");
std::vector<TestVector> testVectors_step3 = readTestVectorsFromFile(std::string(BASE_OSNMA_TEST_VECTORS) + "osnma_test_vectors/npk_step3/07_OCT_2023_GST_04_45_01.csv");
if (testVectors_step1.empty() || testVectors_step2.empty() || testVectors_step3.empty())
{
ASSERT_TRUE(false);
}
std::vector<std::vector<TestVector>> testVectors = {testVectors_step1, testVectors_step2, testVectors_step3};
// Act
d_flag_NPK = true;
bool result = feedOsnmaWithTestVectors(osnma, testVectors, input_times);
ASSERT_TRUE(result);
// Assert
LOG(INFO) << "Successful tags count= " << osnma->d_count_successful_tags;
LOG(INFO) << "Failed tags count= " << osnma->d_count_failed_tags;
LOG(INFO) << "Unverified tags count= " << osnma->d_tags_awaiting_verify.size();
LOG(INFO) << "Failed Kroot count= " << osnma->d_count_failed_Kroot;
LOG(INFO) << "Failed PK count= " << osnma->d_count_failed_pubKey;
LOG(INFO) << "Failed MACSEQ count= " << osnma->d_count_failed_macseq;
ASSERT_EQ(osnma->d_count_failed_tags, 0);
ASSERT_EQ(osnma->d_count_failed_Kroot, 0);
ASSERT_EQ(osnma->d_count_failed_pubKey, 0);
ASSERT_EQ(osnma->d_count_failed_macseq, 0);
}
TEST_F(OsnmaTestVectors, PublicKeyRevocation)
{
// Arrange
std::string crtFilePath = std::string(BASE_OSNMA_TEST_VECTORS) + "cryptographic_material/Merkle_tree_2/PublicKey/OSNMA_PublicKey_20231007081500_PKID_8.crt";
std::string merkleFilePath = std::string(BASE_OSNMA_TEST_VECTORS) + "cryptographic_material/Merkle_tree_2/MerkleTree/OSNMA_MerkleTree_20231007081500_PKID_8.xml";
osnma_msg_receiver_sptr osnma = osnma_msg_receiver_make(crtFilePath, merkleFilePath);
std::tm input_time_step1 = {0, 45, 7, 7, 10 - 1, 2023 - 1900, 0, 0, 0, 0, 0};
std::tm input_time_step2 = {0, 30, 9, 7, 10 - 1, 2023 - 1900, 0, 0, 0, 0, 0};
std::tm input_time_step3 = {0, 30, 10, 7, 10 - 1, 2023 - 1900, 0, 0, 0, 0, 0};
std::vector<std::tm> input_times = {input_time_step1, input_time_step2, input_time_step3};
std::vector<TestVector> testVectors_step1 = readTestVectorsFromFile(std::string(BASE_OSNMA_TEST_VECTORS) + "osnma_test_vectors/pkrev_step1/07_OCT_2023_GST_07_45_01.csv");
std::vector<TestVector> testVectors_step2 = readTestVectorsFromFile(std::string(BASE_OSNMA_TEST_VECTORS) + "osnma_test_vectors/pkrev_step2/07_OCT_2023_GST_09_30_01.csv");
std::vector<TestVector> testVectors_step3 = readTestVectorsFromFile(std::string(BASE_OSNMA_TEST_VECTORS) + "osnma_test_vectors/pkrev_step3/07_OCT_2023_GST_10_30_01.csv");
if (testVectors_step1.empty() || testVectors_step2.empty() || testVectors_step3.empty())
{
ASSERT_TRUE(false);
}
std::vector<std::vector<TestVector>> testVectors = {testVectors_step1, testVectors_step2, testVectors_step3};
// Act
bool result = feedOsnmaWithTestVectors(osnma, testVectors, input_times);
ASSERT_TRUE(result);
// Assert
LOG(INFO) << "Successful tags count= " << osnma->d_count_successful_tags;
LOG(INFO) << "Failed tags count= " << osnma->d_count_failed_tags;
LOG(INFO) << "Unverified tags count= " << osnma->d_tags_awaiting_verify.size();
LOG(INFO) << "Failed Kroot count= " << osnma->d_count_failed_Kroot;
LOG(INFO) << "Failed PK count= " << osnma->d_count_failed_pubKey;
LOG(INFO) << "Failed MACSEQ count= " << osnma->d_count_failed_macseq;
ASSERT_EQ(osnma->d_count_failed_tags, 0);
ASSERT_EQ(osnma->d_count_failed_Kroot, 0);
ASSERT_EQ(osnma->d_count_failed_pubKey, 0);
ASSERT_EQ(osnma->d_count_failed_macseq, 0);
}
TEST_F(OsnmaTestVectors, ChainRenewal)
{
// Arrange
std::string crtFilePath = std::string(BASE_OSNMA_TEST_VECTORS) + "cryptographic_material/Merkle_tree_2/PublicKey/OSNMA_PublicKey_20231007041500_PKID_7.crt";
std::string merkleFilePath = std::string(BASE_OSNMA_TEST_VECTORS) + "cryptographic_material/Merkle_tree_2/MerkleTree/OSNMA_MerkleTree_20231007041500_PKID_7.xml";
osnma_msg_receiver_sptr osnma = osnma_msg_receiver_make(crtFilePath, merkleFilePath);
std::tm input_time_step1 = {0, 45, 16, 6, 10 - 1, 2023 - 1900, 0, 0, 0, 0, 0};
std::tm input_time_step2 = {0, 30, 18, 6, 10 - 1, 2023 - 1900, 0, 0, 0, 0, 0};
std::vector<std::tm> input_times = {input_time_step1, input_time_step2};
std::vector<TestVector> testVectors_step1 = readTestVectorsFromFile(std::string(BASE_OSNMA_TEST_VECTORS) + "osnma_test_vectors/eoc_step1/06_OCT_2023_GST_16_45_01.csv");
std::vector<TestVector> testVectors_step2 = readTestVectorsFromFile(std::string(BASE_OSNMA_TEST_VECTORS) + "osnma_test_vectors/eoc_step2/06_OCT_2023_GST_18_30_01.csv");
if (testVectors_step1.empty() || testVectors_step2.empty())
{
ASSERT_TRUE(false);
}
std::vector<std::vector<TestVector>> testVectors = {testVectors_step1, testVectors_step2};
// Act
bool result = feedOsnmaWithTestVectors(osnma, testVectors, input_times);
ASSERT_TRUE(result);
// Assert
LOG(INFO) << "Successful tags count= " << osnma->d_count_successful_tags;
LOG(INFO) << "Failed tags count= " << osnma->d_count_failed_tags;
LOG(INFO) << "Unverified tags count= " << osnma->d_tags_awaiting_verify.size();
LOG(INFO) << "Failed Kroot count= " << osnma->d_count_failed_Kroot;
LOG(INFO) << "Failed PK count= " << osnma->d_count_failed_pubKey;
LOG(INFO) << "Failed MACSEQ count= " << osnma->d_count_failed_macseq;
ASSERT_EQ(osnma->d_count_failed_tags, 0);
ASSERT_EQ(osnma->d_count_failed_Kroot, 0);
ASSERT_EQ(osnma->d_count_failed_pubKey, 0);
ASSERT_EQ(osnma->d_count_failed_macseq, 0);
}
TEST_F(OsnmaTestVectors, ChainRevocation)
{
// Arrange
std::string crtFilePath = std::string(BASE_OSNMA_TEST_VECTORS) + "cryptographic_material/Merkle_tree_2/PublicKey/OSNMA_PublicKey_20231007041500_PKID_7.crt";
std::string merkleFilePath = std::string(BASE_OSNMA_TEST_VECTORS) + "cryptographic_material/Merkle_tree_2/MerkleTree/OSNMA_MerkleTree_20231007041500_PKID_7.xml";
osnma_msg_receiver_sptr osnma = osnma_msg_receiver_make(crtFilePath, merkleFilePath);
std::tm input_time_step1 = {0, 45, 21, 6, 10 - 1, 2023 - 1900, 0, 0, 0, 0, 0};
std::tm input_time_step2 = {0, 30, 23, 6, 10 - 1, 2023 - 1900, 0, 0, 0, 0, 0};
std::tm input_time_step3 = {0, 30, 00, 7, 10 - 1, 2023 - 1900, 0, 0, 0, 0, 0};
std::vector<std::tm> input_times = {input_time_step1, input_time_step2, input_time_step3};
std::vector<TestVector> testVectors_step1 = readTestVectorsFromFile(std::string(BASE_OSNMA_TEST_VECTORS) + "osnma_test_vectors/crev_step1/06_OCT_2023_GST_21_45_01.csv");
std::vector<TestVector> testVectors_step2 = readTestVectorsFromFile(std::string(BASE_OSNMA_TEST_VECTORS) + "osnma_test_vectors/crev_step2/06_OCT_2023_GST_23_30_01.csv");
std::vector<TestVector> testVectors_step3 = readTestVectorsFromFile(std::string(BASE_OSNMA_TEST_VECTORS) + "osnma_test_vectors/crev_step3/07_OCT_2023_GST_00_30_01.csv");
if (testVectors_step1.empty() || testVectors_step2.empty() || testVectors_step3.empty())
{
ASSERT_TRUE(false);
}
std::vector<std::vector<TestVector>> testVectors = {testVectors_step1, testVectors_step2, testVectors_step3};
// Act
bool result = feedOsnmaWithTestVectors(osnma, testVectors, input_times);
ASSERT_TRUE(result);
// Assert
LOG(INFO) << "Successful tags count= " << osnma->d_count_successful_tags;
LOG(INFO) << "Failed tags count= " << osnma->d_count_failed_tags;
LOG(INFO) << "Unverified tags count= " << osnma->d_tags_awaiting_verify.size();
LOG(INFO) << "Failed Kroot count= " << osnma->d_count_failed_Kroot;
LOG(INFO) << "Failed PK count= " << osnma->d_count_failed_pubKey;
LOG(INFO) << "Failed MACSEQ count= " << osnma->d_count_failed_macseq;
ASSERT_EQ(osnma->d_count_failed_tags, 0);
ASSERT_EQ(osnma->d_count_failed_Kroot, 0);
ASSERT_EQ(osnma->d_count_failed_pubKey, 0);
ASSERT_EQ(osnma->d_count_failed_macseq, 0);
}
TEST_F(OsnmaTestVectors, AlertMessage)
{
// Arrange
std::string crtFilePath = std::string(BASE_OSNMA_TEST_VECTORS) + "cryptographic_material/Merkle_tree_3/PublicKey/OSNMA_PublicKey_20231007201500_PKID_1.crt";
std::string merkleFilePath = std::string(BASE_OSNMA_TEST_VECTORS) + "cryptographic_material/Merkle_tree_3/MerkleTree/OSNMA_MerkleTree_20231007201500_PKID_1.xml";
osnma_msg_receiver_sptr osnma = osnma_msg_receiver_make(crtFilePath, merkleFilePath);
std::tm input_time_step1 = {0, 45, 18, 7, 10 - 1, 2023 - 1900, 0, 0, 0, 0, 0};
std::tm input_time_step2 = {0, 45, 19, 7, 10 - 1, 2023 - 1900, 0, 0, 0, 0, 0};
std::vector<std::tm> input_times = {input_time_step1, input_time_step2};
std::vector<TestVector> testVectors_step1 = readTestVectorsFromFile(std::string(BASE_OSNMA_TEST_VECTORS) + "osnma_test_vectors/oam_step1/07_OCT_2023_GST_18_45_01.csv");
std::vector<TestVector> testVectors_step2 = readTestVectorsFromFile(std::string(BASE_OSNMA_TEST_VECTORS) + "osnma_test_vectors/oam_step2/07_OCT_2023_GST_19_45_01.csv");
if (testVectors_step1.empty() || testVectors_step2.empty())
{
ASSERT_TRUE(false);
}
std::vector<std::vector<TestVector>> testVectors = {testVectors_step1, testVectors_step2};
// Act
bool result = feedOsnmaWithTestVectors(osnma, testVectors, input_times);
ASSERT_TRUE(result);
// Assert
LOG(INFO) << "Successful tags count= " << osnma->d_count_successful_tags;
LOG(INFO) << "Failed tags count= " << osnma->d_count_failed_tags;
LOG(INFO) << "Unverified tags count= " << osnma->d_tags_awaiting_verify.size();
LOG(INFO) << "Failed Kroot count= " << osnma->d_count_failed_Kroot;
LOG(INFO) << "Failed PK count= " << osnma->d_count_failed_pubKey;
LOG(INFO) << "Failed MACSEQ count= " << osnma->d_count_failed_macseq;
ASSERT_EQ(osnma->d_count_failed_tags, 0);
ASSERT_EQ(osnma->d_count_failed_Kroot, 0);
ASSERT_EQ(osnma->d_count_failed_pubKey, 0);
ASSERT_EQ(osnma->d_count_failed_macseq, 0);
}
// Auxiliary functions for the OsnmaTestVectorsSimulation test fixture.
// Essentially, they perform same work as the telemetry decoder block, but adapted to the osnma-test-vector files.
bool OsnmaTestVectors::feedOsnmaWithTestVectors(osnma_msg_receiver_sptr osnma_object, std::vector<std::vector<TestVector>> testVectors, std::vector<std::tm> startTimesFiles)
{
bool end_of_hex_stream;
int offset_byte{0};
int byte_index{0}; // index containing the last byte position of the hex stream that was retrieved. Takes advantage that all TVs have same size
const int DUMMY_PAGE{63};
bool flag_dummy_page{false};
// Act
// loop over all bytes of data. Note: all TestVectors have same amount of data.
// if needed, add global flags so that particular logic may be done at certain points in between files
for (size_t test_step = 0; test_step < testVectors.size(); test_step++)
{
// set variables for each file
end_of_hex_stream = false;
offset_byte = 0;
byte_index = 0;
set_time(startTimesFiles[test_step]);
std::cout << "OsnmaTestVectorsSimulation:"
<< " d_GST_SIS= " << d_GST_SIS
<< ", TOW=" << TOW
<< ", WN=" << WN << std::endl;
if (test_step == 1 && d_flag_NPK == true)
{
// step 2: this simulates the osnma connecting to the GSC server and downloading the Merkle tree of the next public key
osnma_object->read_merkle_xml(
std::string(BASE_OSNMA_TEST_VECTORS) + "cryptographic_material/Merkle_tree_2/MerkleTree/OSNMA_MerkleTree_20231007081500_PKID_8.xml");
}
while (!end_of_hex_stream)
{
// loop over all SVs, extract a subframe
for (const TestVector& tv : testVectors[test_step])
{ // loop over all SVs, extract a subframe
std::cout << "OsnmaTestVectorsSimulation: SVID (PRN_a) " << tv.svId << std::endl;
auto osnmaMsg_sptr = std::make_shared<OSNMA_msg>();
std::array<uint8_t, 15> hkroot{};
std::array<uint32_t, 15> mack{};
byte_index = offset_byte; // reset byte_index to the offset position for the next test vector. Offset is updated at the end of each Subframe (every 30 s or 450 Bytes)
std::map<uint8_t, std::bitset<128>> words_for_OSNMA; // structure containing <WORD_NUMBER> and <EXTRACTED_BITS>
for (int idx = 0; idx < SIZE_SUBFRAME_PAGES; ++idx) // extract all pages of a subframe
{
// extract bytes of complete page (odd+even) -- extract SIZE_PAGE from tv.navBits, starting from byte_index
std::vector<uint8_t> page_bytes = extract_page_bytes(tv, byte_index, SIZE_PAGE_BYTES);
if (page_bytes.empty())
{
std::cout << "OsnmaTestVectorsSimulation: end of TestVectors \n"
<< "byte_index=" << byte_index << " expected= " << 432000 / 8 << std::endl;
end_of_hex_stream = true;
break;
}
// convert them to bitset representation using bytes_to_string
std::string page_bits = bytes_to_str(page_bytes);
// Extract the 40 OSNMA bits starting from the 18th bit
std::string even_page = page_bits.substr(0, page_bits.size() / 2);
std::string odd_page = page_bits.substr(page_bits.size() / 2);
if (even_page.size() < 120 || odd_page.size() < 120)
{
std::cout << "OsnmaTestVectorsSimulation: error parsing pages" << std::endl;
}
bool even_odd_OK = even_page[0] == '0' && odd_page[0] == '1';
bool page_type_OK = even_page[1] == '0' && odd_page[1] == '0';
bool tail_bits_OK = even_page.substr(even_page.size() - 6) == "000000" && odd_page.substr(odd_page.size() - 6) == "000000";
if (!even_odd_OK || !page_type_OK || !tail_bits_OK)
std::cerr << "OsnmaTestVectorsSimulation: error parsing pages." << std::endl;
std::bitset<112> data_k(even_page.substr(2, 112));
std::bitset<16> data_j(odd_page.substr(2, 16));
std::bitset<112> shifted_data_k = data_k;
uint8_t word_type = static_cast<uint8_t>((shifted_data_k >>= 106).to_ulong()); // word type is the first 6 bits of the word
// std::cout << "OsnmaTestVectorsSimulation: received Word " << static_cast<int>(word_type) << std::endl;
if ((word_type >= 1 && word_type <= 5) || word_type == 6 || word_type == 10)
{
// store raw word
std::bitset<128> data_combined(data_k.to_string() + data_j.to_string());
words_for_OSNMA[word_type] = data_combined;
}
if (word_type == DUMMY_PAGE)
flag_dummy_page = true;
// place it into osnma object.
std::bitset<40> osnmaBits(odd_page.substr(18, 40));
// Extract bits for hkroot and mack
std::bitset<8> hkrootBits(osnmaBits.to_string().substr(0, 8));
std::bitset<32> mackBits(osnmaBits.to_string().substr(8, 32));
hkroot[idx] = static_cast<uint8_t>(hkrootBits.to_ulong());
mack[idx] = static_cast<uint32_t>(mackBits.to_ulong());
byte_index += SIZE_PAGE_BYTES;
}
// std::cout << "----------" << std::endl;
if (end_of_hex_stream)
break;
if (flag_dummy_page)
{
flag_dummy_page = false;
continue; // skip this SV
}
// Fill osnma object
osnmaMsg_sptr->hkroot = hkroot;
osnmaMsg_sptr->mack = mack;
osnmaMsg_sptr->TOW_sf0 = d_GST_SIS & 0x000FFFFF;
osnmaMsg_sptr->WN_sf0 = (d_GST_SIS & 0xFFF00000) >> 20;
osnmaMsg_sptr->PRN = tv.svId; // PRNa
// TODO - refactor this logic, currently it is split
// check if words_for_OSNMA 1--> 5 words_for_OSNMA are received => fill EphClockStatus data vector
bool ephClockStatusWordsReceived = true;
for (int i = 1; i <= 5; ++i)
{
if (words_for_OSNMA.find(i) == words_for_OSNMA.end())
{
ephClockStatusWordsReceived = false;
std::cerr << "OsnmaTestVectorsSimulation: error parsing words_for_OSNMA 1->5. "
"Word "
<< i << " should be received for each subframe but was not." << std::endl;
}
}
// extract bits as needed by osnma block
if (ephClockStatusWordsReceived)
{
// Define the starting position and length of bits to extract for each word
std::map<uint8_t, std::pair<uint8_t, uint8_t>> extractionParams = {
{1, {6, 120}},
{2, {6, 120}},
{3, {6, 122}},
{4, {6, 120}},
{5, {6, 67}},
};
// Fill NavData bits -- Iterate over the extraction parameters
std::string nav_data_ADKD_0_12 = "";
for (const auto& param : extractionParams)
{
uint8_t wordKey = param.first;
uint8_t start = param.second.first;
uint8_t length = param.second.second;
// Extract the required bits and fill osnma block
nav_data_ADKD_0_12 += words_for_OSNMA[wordKey].to_string().substr(start, length);
}
// send to osnma block
bool check_size_is_ok = nav_data_ADKD_0_12.size() == 549;
if (check_size_is_ok)
{
std::cout << "Galileo OSNMA: sending ADKD=0/12 navData, PRN_d (" << tv.svId << ") "
<< "TOW_sf=" << osnmaMsg_sptr->TOW_sf0 << std::endl;
const auto tmp_obj_osnma = std::make_shared<std::tuple<uint32_t, std::string, uint32_t>>( // < PRNd , navDataBits, TOW_Sosf>
tv.svId,
nav_data_ADKD_0_12,
osnmaMsg_sptr->TOW_sf0);
// LOG(INFO) << "|---> Galileo OSNMA :: Telemetry Decoder NavData (PRN_d=" << static_cast<int>(tv.svId) << ", TOW=" << static_cast<int>(osnmaMsg_sptr->TOW_sf0) << "): 0b" << nav_data_ADKD_0_12;
osnma_object->msg_handler_osnma(pmt::make_any(tmp_obj_osnma));
}
}
// check w6 && w10 is received => fill TimingData data vector
bool timingWordsReceived = words_for_OSNMA.find(6) != words_for_OSNMA.end() &&
words_for_OSNMA.find(10) != words_for_OSNMA.end();
// extract bits as needed by osnma block
if (timingWordsReceived)
{
// Define the starting position and length of bits to extract for each word
std::map<uint8_t, std::pair<uint8_t, uint8_t>> extractionParams = {
{6, {6, 99}},
{10, {86, 42}}};
std::string nav_data_ADKD_4 = "";
// Fill NavData bits -- Iterate over the extraction parameters
for (const auto& param : extractionParams)
{
uint8_t wordKey = param.first;
uint8_t start = param.second.first;
uint8_t length = param.second.second;
// Extract the required bits and fill osnma block
nav_data_ADKD_4 += words_for_OSNMA[wordKey].to_string().substr(start, length);
}
// send to osnma block
bool check_size_is_ok = nav_data_ADKD_4.size() == 141;
if (check_size_is_ok)
{
std::cout << "Galileo OSNMA: sending ADKD=04 navData, PRN_d (" << tv.svId << ") "
<< "TOW_sf=" << osnmaMsg_sptr->TOW_sf0 << std::endl;
const auto tmp_obj_osnma = std::make_shared<std::tuple<uint32_t, std::string, uint32_t>>( // < PRNd , navDataBits, TOW_Sosf>
tv.svId,
nav_data_ADKD_4,
osnmaMsg_sptr->TOW_sf0);
// LOG(INFO) << "|---> Galileo OSNMA :: Telemetry Decoder NavData (PRN_d=" << static_cast<int>(tv.svId) << ", TOW=" << static_cast<int>(osnmaMsg_sptr->TOW_sf0) << "): 0b" << nav_data_ADKD_4;
osnma_object->msg_handler_osnma(pmt::make_any(tmp_obj_osnma));
}
}
// Call the handler, as if it came from telemetry decoder block
auto temp_obj = pmt::make_any(osnmaMsg_sptr);
osnma_object->msg_handler_osnma(temp_obj); // osnma entry point
}
if (!end_of_hex_stream)
{
offset_byte = byte_index; // update offset for the next subframe
d_GST_SIS += DURATION_SUBFRAME;
TOW = d_GST_SIS & 0x000FFFFF;
WN = (d_GST_SIS & 0xFFF00000) >> 20;
std::cout << "OsnmaTestVectorsSimulation:"
<< " d_GST_SIS= " << d_GST_SIS
<< ", TOW=" << TOW
<< ", WN=" << WN << std::endl;
}
}
if (end_of_hex_stream)
continue;
}
return true;
}
std::vector<TestVector> OsnmaTestVectors::readTestVectorsFromFile(const std::string& filename)
{
std::ifstream file(filename);
std::vector<TestVector> testVectors;
if (!file.is_open())
{
std::cerr << "Error reading the file \"" << filename << "\" \n";
return testVectors;
}
std::string line;
std::getline(file, line);
if (line != "SVID,NumNavBits,NavBitsHEX\r")
{
std::cerr << "Error parsing first line"
<< "\n";
}
while (std::getline(file, line))
{
std::stringstream ss(line);
TestVector tv;
std::string val;
std::getline(ss, val, ',');
tv.svId = std::stoi(val);
std::getline(ss, val, ',');
tv.numNavBits = std::stoi(val);
std::getline(ss, val, ',');
tv.navBits = OsnmaTestVectors::parseNavBits(val);
testVectors.push_back(tv);
}
return testVectors;
}
std::vector<uint8_t> OsnmaTestVectors::parseNavBits(const std::string& hexadecimal)
{
std::vector<uint8_t> bytes;
for (unsigned int i = 0; i < hexadecimal.length() - 1; i += 2)
{
std::string byteString = hexadecimal.substr(i, 2);
uint8_t byte = static_cast<uint8_t>(strtol(byteString.c_str(), nullptr, 16));
bytes.push_back(byte);
}
return bytes;
}
std::string OsnmaTestVectors::bytes_to_str(const std::vector<uint8_t>& bytes)
{
std::string bit_string;
bit_string.reserve(bytes.size() * 8);
for (const auto& byte : bytes)
{
std::bitset<8> bits(byte);
bit_string += bits.to_string();
}
return bit_string;
}
/**
* @brief Extracts a range of bytes from a TestVector's navBits vector.
*
* This function extracts a extracts the bytes of complete page (odd+even)
* from the navBits vector of a TestVector object.
*
*
* @param tv The TestVector object from which to extract bytes.
* @param byte_index The index of the first byte to extract.
* @param num_bytes The number of bytes to extract.
* @return A vector containing the extracted bytes, or an empty vector if extraction is not possible.
*/
std::vector<uint8_t> OsnmaTestVectors::extract_page_bytes(const TestVector& tv, int byte_index, int num_bytes)
{
// Ensure we don't go beyond the end of tv.navBits
int num_bytes_to_extract = std::min(num_bytes, static_cast<int>(tv.navBits.size() - byte_index));
// If byte_index is beyond the end of tv.navBits, return an empty vector
if (num_bytes_to_extract <= 0)
{
return std::vector<uint8_t>();
}
// Use std::next to get an iterator to the range to extract
std::vector<uint8_t> extracted_bytes(tv.navBits.begin() + byte_index, tv.navBits.begin() + byte_index + num_bytes_to_extract);
return extracted_bytes;
}
/**
* @brief Sets the time based on the given input.
*
* This function calculates the week number (WN) and time of week (TOW)
* based on the input time and the GST_START_EPOCH. It then stores the
* calculated values in the WN and TOW member variables. Finally, it
* combines the WN and TOW into a single 32-bit value and stores it in
* the d_GST_SIS member variable.
* \post WN, TOW and GST_SIS are set up based on the input time.
*
* @param input The input time as a tm struct.
*/
void OsnmaTestVectors::set_time(std::tm& input)
{
auto epoch_time_point = std::chrono::system_clock::from_time_t(mktime(&GST_START_EPOCH));
auto input_time_point = std::chrono::system_clock::from_time_t(mktime(&input));
// Get the duration from epoch in seconds
auto duration_sec = std::chrono::duration_cast<std::chrono::seconds>(input_time_point - epoch_time_point);
// Calculate the week number (WN) and time of week (TOW)
uint32_t sec_in_week = 7 * 24 * 60 * 60;
uint32_t week_number = duration_sec.count() / sec_in_week;
uint32_t time_of_week = duration_sec.count() % sec_in_week;
this->WN = week_number;
this->TOW = time_of_week + LEAP_SECONDS;
// Return the week number and time of week as a pair
// TODO: d_GST_SIS or d_receiver_time? doubt
// I am assuming that local realisation of receiver is identical to SIS GST time coming from W5 or W0
this->d_GST_SIS = (this->WN & 0x00000FFF) << 20 | (this->TOW & 0x000FFFFF);
}