1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-01-18 21:23:02 +00:00
gnss-sdr/tests/unit-tests/signal-processing-blocks/acquisition/acq_performance_test.cc

1370 lines
62 KiB
C++

/*!
* \file acq_performance_test.cc
* \brief This class implements an acquisition performance test
* \author Carles Fernandez-Prades, 2018. cfernandez(at)cttc.cat
*
*
* -----------------------------------------------------------------------------
*
* GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
* This file is part of GNSS-SDR.
*
* Copyright (C) 2010-2020 (see AUTHORS file for a list of contributors)
* SPDX-License-Identifier: GPL-3.0-or-later
*
* -----------------------------------------------------------------------------
*/
#include "GPS_L1_CA.h"
#include "acquisition_dump_reader.h"
#include "display.h"
#include "file_configuration.h"
#include "galileo_e1_pcps_ambiguous_acquisition.h"
#include "galileo_e5a_pcps_acquisition.h"
#include "glonass_l1_ca_pcps_acquisition.h"
#include "glonass_l2_ca_pcps_acquisition.h"
#include "gnss_block_interface.h"
#include "gnss_sdr_filesystem.h"
#include "gnss_sdr_valve.h"
#include "gnuplot_i.h"
#include "gps_l1_ca_pcps_acquisition.h"
#include "gps_l1_ca_pcps_acquisition_fine_doppler.h"
#include "gps_l2_m_pcps_acquisition.h"
#include "gps_l5i_pcps_acquisition.h"
#include "in_memory_configuration.h"
#include "signal_generator_flags.h"
#include "test_flags.h"
#include "tracking_true_obs_reader.h"
#include "true_observables_reader.h"
#include <gnuradio/blocks/file_source.h>
#include <gnuradio/blocks/interleaved_char_to_complex.h>
#include <gnuradio/blocks/skiphead.h>
#include <gnuradio/top_block.h>
#include <pmt/pmt.h>
#include <cstdint>
#include <string>
#include <thread>
#include <utility>
#if HAS_GENERIC_LAMBDA
#else
#include <boost/bind/bind.hpp>
#endif
#if PMT_USES_BOOST_ANY
namespace wht = boost;
#else
namespace wht = std;
#endif
#if USE_GLOG_AND_GFLAGS
DEFINE_string(config_file_ptest, std::string(""), "File containing alternative configuration parameters for the acquisition performance test.");
DEFINE_string(acq_test_input_file, std::string(""), "File containing raw signal data, must be in int8_t format. The signal generator will not be used.");
DEFINE_string(acq_test_implementation, std::string("GPS_L1_CA_PCPS_Acquisition"), "Acquisition block implementation under test. Alternatives: GPS_L1_CA_PCPS_Acquisition, GPS_L1_CA_PCPS_Acquisition_Fine_Doppler, Galileo_E1_PCPS_Ambiguous_Acquisition, GLONASS_L1_CA_PCPS_Acquisition, GLONASS_L2_CA_PCPS_Acquisition, GPS_L2_M_PCPS_Acquisition, Galileo_E5a_Pcps_Acquisition, GPS_L5i_PCPS_Acquisition");
DEFINE_int32(acq_test_doppler_max, 5000, "Maximum Doppler, in Hz");
DEFINE_int32(acq_test_doppler_step, 125, "Doppler step, in Hz.");
DEFINE_int32(acq_test_coherent_time_ms, 1, "Acquisition coherent time, in ms");
DEFINE_int32(acq_test_max_dwells, 1, "Number of non-coherent integrations.");
DEFINE_bool(acq_test_bit_transition_flag, false, "Bit transition flag.");
DEFINE_bool(acq_test_make_two_steps, false, "Perform second step in a thinner grid.");
DEFINE_int32(acq_test_second_nbins, 4, "If --acq_test_make_two_steps is set to true, this parameter sets the number of bins done in the acquisition refinement stage.");
DEFINE_int32(acq_test_second_doppler_step, 10, "If --acq_test_make_two_steps is set to true, this parameter sets the Doppler step applied in the acquisition refinement stage, in Hz.");
DEFINE_int32(acq_test_signal_duration_s, 2, "Generated signal duration, in s");
DEFINE_int32(acq_test_num_meas, 0, "Number of measurements per run. 0 means the complete file.");
DEFINE_double(acq_test_cn0_init, 30.0, "Initial CN0, in dBHz.");
DEFINE_double(acq_test_cn0_final, 45.0, "Final CN0, in dBHz.");
DEFINE_double(acq_test_cn0_step, 3.0, "CN0 step, in dB.");
DEFINE_double(acq_test_threshold_init, 3.0, "Initial acquisition threshold");
DEFINE_double(acq_test_threshold_final, 4.0, "Final acquisition threshold");
DEFINE_double(acq_test_threshold_step, 0.5, "Acquisition threshold step");
DEFINE_double(acq_test_pfa_init, 1e-5, "Set initial threshold via probability of false alarm. Disable with -1.0");
DEFINE_int32(acq_test_PRN, 1, "PRN number of a present satellite");
DEFINE_int32(acq_test_fake_PRN, 33, "PRN number of a non-present satellite");
DEFINE_int32(acq_test_iterations, 1, "Number of iterations (same signal, different noise realization)");
DEFINE_bool(plot_acq_test, false, "Plots results with gnuplot, if available");
DEFINE_int32(acq_test_skiphead, 0, "Number of samples to skip in the input file");
#else
ABSL_FLAG(std::string, config_file_ptest, std::string(""), "File containing alternative configuration parameters for the acquisition performance test.");
ABSL_FLAG(std::string, acq_test_input_file, std::string(""), "File containing raw signal data, must be in int8_t format. The signal generator will not be used.");
ABSL_FLAG(std::string, acq_test_implementation, std::string("GPS_L1_CA_PCPS_Acquisition"), "Acquisition block implementation under test. Alternatives: GPS_L1_CA_PCPS_Acquisition, GPS_L1_CA_PCPS_Acquisition_Fine_Doppler, Galileo_E1_PCPS_Ambiguous_Acquisition, GLONASS_L1_CA_PCPS_Acquisition, GLONASS_L2_CA_PCPS_Acquisition, GPS_L2_M_PCPS_Acquisition, Galileo_E5a_Pcps_Acquisition, GPS_L5i_PCPS_Acquisition");
ABSL_FLAG(int32_t, acq_test_doppler_max, 5000, "Maximum Doppler, in Hz");
ABSL_FLAG(int32_t, acq_test_doppler_step, 125, "Doppler step, in Hz.");
ABSL_FLAG(int32_t, acq_test_coherent_time_ms, 1, "Acquisition coherent time, in ms");
ABSL_FLAG(int32_t, acq_test_max_dwells, 1, "Number of non-coherent integrations.");
ABSL_FLAG(bool, acq_test_bit_transition_flag, false, "Bit transition flag.");
ABSL_FLAG(bool, acq_test_make_two_steps, false, "Perform second step in a thinner grid.");
ABSL_FLAG(int32_t, acq_test_second_nbins, 4, "If --acq_test_make_two_steps is set to true, this parameter sets the number of bins done in the acquisition refinement stage.");
ABSL_FLAG(int32_t, acq_test_second_doppler_step, 10, "If --acq_test_make_two_steps is set to true, this parameter sets the Doppler step applied in the acquisition refinement stage, in Hz.");
ABSL_FLAG(int32_t, acq_test_signal_duration_s, 2, "Generated signal duration, in s");
ABSL_FLAG(int32_t, acq_test_num_meas, 0, "Number of measurements per run. 0 means the complete file.");
ABSL_FLAG(double, acq_test_cn0_init, 30.0, "Initial CN0, in dBHz.");
ABSL_FLAG(double, acq_test_cn0_final, 45.0, "Final CN0, in dBHz.");
ABSL_FLAG(double, acq_test_cn0_step, 3.0, "CN0 step, in dB.");
ABSL_FLAG(double, acq_test_threshold_init, 3.0, "Initial acquisition threshold");
ABSL_FLAG(double, acq_test_threshold_final, 4.0, "Final acquisition threshold");
ABSL_FLAG(double, acq_test_threshold_step, 0.5, "Acquisition threshold step");
ABSL_FLAG(double, acq_test_pfa_init, 1e-5, "Set initial threshold via probability of false alarm. Disable with -1.0");
ABSL_FLAG(int32_t, acq_test_PRN, 1, "PRN number of a present satellite");
ABSL_FLAG(int32_t, acq_test_fake_PRN, 33, "PRN number of a non-present satellite");
ABSL_FLAG(int32_t, acq_test_iterations, 1, "Number of iterations (same signal, different noise realization)");
ABSL_FLAG(bool, plot_acq_test, false, "Plots results with gnuplot, if available");
ABSL_FLAG(int32_t, acq_test_skiphead, 0, "Number of samples to skip in the input file");
#endif
// ######## GNURADIO BLOCK MESSAGE RECEVER #########
class AcqPerfTest_msg_rx;
using AcqPerfTest_msg_rx_sptr = gnss_shared_ptr<AcqPerfTest_msg_rx>;
AcqPerfTest_msg_rx_sptr AcqPerfTest_msg_rx_make(Concurrent_Queue<int>& queue);
class AcqPerfTest_msg_rx : public gr::block
{
private:
friend AcqPerfTest_msg_rx_sptr AcqPerfTest_msg_rx_make(Concurrent_Queue<int>& queue);
void msg_handler_channel_events(const pmt::pmt_t msg);
explicit AcqPerfTest_msg_rx(Concurrent_Queue<int>& queue);
Concurrent_Queue<int>& channel_internal_queue;
public:
int rx_message;
~AcqPerfTest_msg_rx();
};
AcqPerfTest_msg_rx_sptr AcqPerfTest_msg_rx_make(Concurrent_Queue<int>& queue)
{
return AcqPerfTest_msg_rx_sptr(new AcqPerfTest_msg_rx(queue));
}
void AcqPerfTest_msg_rx::msg_handler_channel_events(const pmt::pmt_t msg)
{
try
{
int64_t message = pmt::to_long(std::move(msg));
rx_message = message;
channel_internal_queue.push(rx_message);
}
catch (const wht::bad_any_cast& e)
{
LOG(WARNING) << "msg_handler_channel_events Bad any_cast: " << e.what();
rx_message = 0;
}
}
AcqPerfTest_msg_rx::AcqPerfTest_msg_rx(Concurrent_Queue<int>& queue) : gr::block("AcqPerfTest_msg_rx", gr::io_signature::make(0, 0, 0), gr::io_signature::make(0, 0, 0)), channel_internal_queue(queue)
{
this->message_port_register_in(pmt::mp("events"));
this->set_msg_handler(pmt::mp("events"),
#if HAS_GENERIC_LAMBDA
[this](auto&& PH1) { msg_handler_channel_events(PH1); });
#else
#if USE_BOOST_BIND_PLACEHOLDERS
boost::bind(&AcqPerfTest_msg_rx::msg_handler_channel_events, this, boost::placeholders::_1));
#else
boost::bind(&AcqPerfTest_msg_rx::msg_handler_channel_events, this, _1));
#endif
#endif
rx_message = 0;
}
AcqPerfTest_msg_rx::~AcqPerfTest_msg_rx() = default;
// -----------------------------------------
class AcquisitionPerformanceTest : public ::testing::Test
{
protected:
AcquisitionPerformanceTest()
{
config = std::make_shared<InMemoryConfiguration>();
item_size = sizeof(gr_complex);
gnss_synchro = Gnss_Synchro();
#if USE_GLOG_AND_GFLAGS
doppler_max = static_cast<unsigned int>(FLAGS_acq_test_doppler_max);
doppler_step = static_cast<unsigned int>(FLAGS_acq_test_doppler_step);
#else
doppler_max = static_cast<unsigned int>(absl::GetFlag(FLAGS_acq_test_doppler_max));
doppler_step = static_cast<unsigned int>(absl::GetFlag(FLAGS_acq_test_doppler_step));
#endif
stop = false;
#if USE_GLOG_AND_GFLAGS
if (FLAGS_acq_test_input_file.empty())
{
cn0_vector.push_back(FLAGS_acq_test_cn0_init);
double aux = FLAGS_acq_test_cn0_init + FLAGS_acq_test_cn0_step;
while (aux <= FLAGS_acq_test_cn0_final)
{
cn0_vector.push_back(aux);
aux = aux + FLAGS_acq_test_cn0_step;
}
}
#else
if (absl::GetFlag(FLAGS_acq_test_input_file).empty())
{
cn0_vector.push_back(absl::GetFlag(FLAGS_acq_test_cn0_init));
double aux = absl::GetFlag(FLAGS_acq_test_cn0_init) + absl::GetFlag(FLAGS_acq_test_cn0_step);
while (aux <= absl::GetFlag(FLAGS_acq_test_cn0_final))
{
cn0_vector.push_back(aux);
aux = aux + absl::GetFlag(FLAGS_acq_test_cn0_step);
}
}
#endif
else
{
cn0_vector = {0.0};
}
if (implementation == "GPS_L1_CA_PCPS_Acquisition")
{
signal_id = "1C";
system_id = 'G';
#if USE_GLOG_AND_GFLAGS
coherent_integration_time_ms = FLAGS_acq_test_coherent_time_ms;
#else
coherent_integration_time_ms = absl::GetFlag(FLAGS_acq_test_coherent_time_ms);
#endif
min_integration_ms = 1;
}
else if (implementation == "GPS_L1_CA_PCPS_Acquisition_Fine_Doppler")
{
signal_id = "1C";
system_id = 'G';
#if USE_GLOG_AND_GFLAGS
coherent_integration_time_ms = FLAGS_acq_test_coherent_time_ms;
#else
coherent_integration_time_ms = absl::GetFlag(FLAGS_acq_test_coherent_time_ms);
#endif
min_integration_ms = 1;
}
else if (implementation == "Galileo_E1_PCPS_Ambiguous_Acquisition")
{
signal_id = "1B";
system_id = 'E';
min_integration_ms = 4;
#if USE_GLOG_AND_GFLAGS
if (FLAGS_acq_test_coherent_time_ms == 1)
#else
if (absl::GetFlag(FLAGS_acq_test_coherent_time_ms) == 1)
#endif
{
coherent_integration_time_ms = 4;
}
else
{
#if USE_GLOG_AND_GFLAGS
coherent_integration_time_ms = FLAGS_acq_test_coherent_time_ms;
#else
coherent_integration_time_ms = absl::GetFlag(FLAGS_acq_test_coherent_time_ms);
#endif
}
}
else if (implementation == "GLONASS_L1_CA_PCPS_Acquisition")
{
signal_id = "1G";
system_id = 'R';
#if USE_GLOG_AND_GFLAGS
coherent_integration_time_ms = FLAGS_acq_test_coherent_time_ms;
#else
coherent_integration_time_ms = absl::GetFlag(FLAGS_acq_test_coherent_time_ms);
#endif
min_integration_ms = 1;
}
else if (implementation == "GLONASS_L2_CA_PCPS_Acquisition")
{
signal_id = "2G";
system_id = 'R';
#if USE_GLOG_AND_GFLAGS
coherent_integration_time_ms = FLAGS_acq_test_coherent_time_ms;
#else
coherent_integration_time_ms = absl::GetFlag(FLAGS_acq_test_coherent_time_ms);
#endif
min_integration_ms = 1;
}
else if (implementation == "GPS_L2_M_PCPS_Acquisition")
{
signal_id = "2S";
system_id = 'G';
#if USE_GLOG_AND_GFLAGS
if (FLAGS_acq_test_coherent_time_ms == 1)
#else
if (absl::GetFlag(FLAGS_acq_test_coherent_time_ms) == 1)
#endif
{
coherent_integration_time_ms = 20;
}
else
{
#if USE_GLOG_AND_GFLAGS
coherent_integration_time_ms = FLAGS_acq_test_coherent_time_ms;
#else
coherent_integration_time_ms = absl::GetFlag(FLAGS_acq_test_coherent_time_ms);
#endif
}
min_integration_ms = 20;
}
else if (implementation == "Galileo_E5a_Pcps_Acquisition")
{
signal_id = "5X";
system_id = 'E';
#if USE_GLOG_AND_GFLAGS
coherent_integration_time_ms = FLAGS_acq_test_coherent_time_ms;
#else
coherent_integration_time_ms = absl::GetFlag(FLAGS_acq_test_coherent_time_ms);
#endif
min_integration_ms = 1;
}
else if (implementation == "GPS_L5i_PCPS_Acquisition")
{
signal_id = "L5";
system_id = 'G';
#if USE_GLOG_AND_GFLAGS
coherent_integration_time_ms = FLAGS_acq_test_coherent_time_ms;
#else
coherent_integration_time_ms = absl::GetFlag(FLAGS_acq_test_coherent_time_ms);
#endif
}
else
{
signal_id = "1C";
system_id = 'G';
#if USE_GLOG_AND_GFLAGS
coherent_integration_time_ms = FLAGS_acq_test_coherent_time_ms;
#else
coherent_integration_time_ms = absl::GetFlag(FLAGS_acq_test_coherent_time_ms);
#endif
min_integration_ms = 1;
}
init();
#if USE_GLOG_AND_GFLAGS
if (FLAGS_acq_test_pfa_init > 0.0)
{
pfa_vector.push_back(FLAGS_acq_test_pfa_init);
float aux = 1.0;
while ((FLAGS_acq_test_pfa_init * std::pow(10, aux)) < 1)
{
pfa_vector.push_back(FLAGS_acq_test_pfa_init * std::pow(10, aux));
aux = aux + 1.0;
}
pfa_vector.push_back(0.999);
}
else
{
auto aux = static_cast<float>(FLAGS_acq_test_threshold_init);
pfa_vector.push_back(aux);
aux = aux + static_cast<float>(FLAGS_acq_test_threshold_step);
while (aux <= static_cast<float>(FLAGS_acq_test_threshold_final))
{
pfa_vector.push_back(aux);
aux = aux + static_cast<float>(FLAGS_acq_test_threshold_step);
}
}
#else
if (absl::GetFlag(FLAGS_acq_test_pfa_init) > 0.0)
{
pfa_vector.push_back(absl::GetFlag(FLAGS_acq_test_pfa_init));
float aux = 1.0;
while ((absl::GetFlag(FLAGS_acq_test_pfa_init) * std::pow(10, aux)) < 1)
{
pfa_vector.push_back(absl::GetFlag(FLAGS_acq_test_pfa_init) * std::pow(10, aux));
aux = aux + 1.0;
}
pfa_vector.push_back(0.999);
}
else
{
auto aux = static_cast<float>(absl::GetFlag(FLAGS_acq_test_threshold_init));
pfa_vector.push_back(aux);
aux = aux + static_cast<float>(absl::GetFlag(FLAGS_acq_test_threshold_step));
while (aux <= static_cast<float>(absl::GetFlag(FLAGS_acq_test_threshold_final)))
{
pfa_vector.push_back(aux);
aux = aux + static_cast<float>(absl::GetFlag(FLAGS_acq_test_threshold_step));
}
}
#endif
num_thresholds = pfa_vector.size();
// the gnss simulator does not dump the trk observables for the last 100 ms of generated signal
int aux2;
#if USE_GLOG_AND_GFLAGS
if (FLAGS_acq_test_bit_transition_flag)
{
aux2 = floor((generated_signal_duration_s * ms_per_s - 100) / (FLAGS_acq_test_coherent_time_ms * 2.0) - 1);
}
else
{
aux2 = floor((generated_signal_duration_s * ms_per_s - 100) / (FLAGS_acq_test_coherent_time_ms * FLAGS_acq_test_max_dwells) - 1);
}
if ((FLAGS_acq_test_num_meas > 0) && (FLAGS_acq_test_num_meas < aux2))
{
num_of_measurements = static_cast<unsigned int>(FLAGS_acq_test_num_meas);
}
else
{
num_of_measurements = static_cast<unsigned int>(aux2);
}
#else
if (absl::GetFlag(FLAGS_acq_test_bit_transition_flag))
{
aux2 = floor((generated_signal_duration_s * ms_per_s - 100) / (absl::GetFlag(FLAGS_acq_test_coherent_time_ms) * 2.0) - 1);
}
else
{
aux2 = floor((generated_signal_duration_s * ms_per_s - 100) / (absl::GetFlag(FLAGS_acq_test_coherent_time_ms) * absl::GetFlag(FLAGS_acq_test_max_dwells)) - 1);
}
if ((absl::GetFlag(FLAGS_acq_test_num_meas) > 0) && (absl::GetFlag(FLAGS_acq_test_num_meas) < aux2))
{
num_of_measurements = static_cast<unsigned int>(absl::GetFlag(FLAGS_acq_test_num_meas));
}
else
{
num_of_measurements = static_cast<unsigned int>(aux2);
}
#endif
Pd.resize(cn0_vector.size());
for (int i = 0; i < static_cast<int>(cn0_vector.size()); i++)
{
Pd[i].reserve(num_thresholds);
}
Pfa.resize(cn0_vector.size());
for (int i = 0; i < static_cast<int>(cn0_vector.size()); i++)
{
Pfa[i].reserve(num_thresholds);
}
Pd_correct.resize(cn0_vector.size());
for (int i = 0; i < static_cast<int>(cn0_vector.size()); i++)
{
Pd_correct[i].reserve(num_thresholds);
}
}
~AcquisitionPerformanceTest() = default;
std::vector<double> cn0_vector;
std::vector<float> pfa_vector;
#if USE_GLOG_AND_GFLAGS
int N_iterations = FLAGS_acq_test_iterations;
#else
int N_iterations = absl::GetFlag(FLAGS_acq_test_iterations);
#endif
void init();
int configure_generator(double cn0);
int generate_signal();
int configure_receiver(double cn0, float pfa, unsigned int iter);
void start_queue();
void wait_message();
void process_message();
void stop_queue();
int run_receiver();
int count_executions(const std::string& basename, unsigned int sat);
void check_results();
void plot_results();
Concurrent_Queue<int> channel_internal_queue;
std::shared_ptr<Concurrent_Queue<pmt::pmt_t>> queue;
gr::top_block_sptr top_block;
std::shared_ptr<AcquisitionInterface> acquisition;
std::shared_ptr<InMemoryConfiguration> config;
std::shared_ptr<FileConfiguration> config_f;
Gnss_Synchro gnss_synchro;
size_t item_size;
unsigned int doppler_max;
unsigned int doppler_step;
bool stop;
int message;
std::thread ch_thread;
#if USE_GLOG_AND_GFLAGS
std::string implementation = FLAGS_acq_test_implementation;
const double baseband_sampling_freq = static_cast<double>(FLAGS_fs_gen_sps);
#else
std::string implementation = absl::GetFlag(FLAGS_acq_test_implementation);
const double baseband_sampling_freq = static_cast<double>(absl::GetFlag(FLAGS_fs_gen_sps));
#endif
int coherent_integration_time_ms;
const int in_acquisition = 1;
const int dump_channel = 0;
#if USE_GLOG_AND_GFLAGS
int generated_signal_duration_s = FLAGS_acq_test_signal_duration_s;
#else
int generated_signal_duration_s = absl::GetFlag(FLAGS_acq_test_signal_duration_s);
#endif
unsigned int num_of_measurements;
unsigned int measurement_counter = 0;
#if USE_GLOG_AND_GFLAGS
unsigned int observed_satellite = FLAGS_acq_test_PRN;
#else
unsigned int observed_satellite = absl::GetFlag(FLAGS_acq_test_PRN);
#endif
std::string path_str = "./acq-perf-test";
int num_thresholds;
unsigned int min_integration_ms;
std::vector<std::vector<float>> Pd;
std::vector<std::vector<float>> Pfa;
std::vector<std::vector<float>> Pd_correct;
std::string signal_id;
private:
static const uint32_t ms_per_s = 1000;
std::string generator_binary;
std::string p1;
std::string p2;
std::string p3;
std::string p4;
std::string p5;
std::string p6;
#if USE_GLOG_AND_GFLAGS
std::string filename_rinex_obs = FLAGS_filename_rinex_obs;
std::string filename_raw_data = FLAGS_filename_raw_data;
#else
std::string filename_rinex_obs = absl::GetFlag(FLAGS_filename_rinex_obs);
std::string filename_raw_data = absl::GetFlag(FLAGS_filename_raw_data);
#endif
char system_id;
double compute_stdev_precision(const std::vector<double>& vec);
double compute_stdev_accuracy(const std::vector<double>& vec, double ref);
};
void AcquisitionPerformanceTest::init()
{
gnss_synchro.Channel_ID = 0;
gnss_synchro.System = system_id;
std::string signal = signal_id;
signal.copy(gnss_synchro.Signal, 2, 0);
gnss_synchro.PRN = observed_satellite;
message = 0;
measurement_counter = 0;
}
void AcquisitionPerformanceTest::start_queue()
{
stop = false;
ch_thread = std::thread(&AcquisitionPerformanceTest::wait_message, this);
}
void AcquisitionPerformanceTest::wait_message()
{
while (!stop)
{
channel_internal_queue.wait_and_pop(message);
process_message();
}
}
void AcquisitionPerformanceTest::process_message()
{
measurement_counter++;
acquisition->reset();
acquisition->set_state(1);
std::cout << "Progress: " << round(static_cast<float>(measurement_counter) / static_cast<float>(num_of_measurements) * 100.0) << "% \r" << std::flush;
if (measurement_counter == num_of_measurements)
{
stop_queue();
top_block->stop();
}
}
void AcquisitionPerformanceTest::stop_queue()
{
stop = true;
}
int AcquisitionPerformanceTest::configure_generator(double cn0)
{
// Configure signal generator
#if USE_GLOG_AND_GFLAGS
generator_binary = FLAGS_generator_binary;
p1 = std::string("-rinex_nav_file=") + FLAGS_rinex_nav_file;
if (FLAGS_dynamic_position.empty())
{
p2 = std::string("-static_position=") + FLAGS_static_position + std::string(",") + std::to_string(std::min(generated_signal_duration_s * 10, 3000));
}
else
{
p2 = std::string("-obs_pos_file=") + std::string(FLAGS_dynamic_position);
}
p3 = std::string("-rinex_obs_file=") + FLAGS_filename_rinex_obs; // RINEX 2.10 observation file output
p4 = std::string("-sig_out_file=") + FLAGS_filename_raw_data; // Baseband signal output file. Will be stored in int8_t IQ multiplexed samples
p5 = std::string("-sampling_freq=") + std::to_string(baseband_sampling_freq); // Baseband sampling frequency [MSps]
p6 = std::string("-CN0_dBHz=") + std::to_string(cn0);
#else
generator_binary = absl::GetFlag(FLAGS_generator_binary);
p1 = std::string("-rinex_nav_file=") + absl::GetFlag(FLAGS_rinex_nav_file);
if (absl::GetFlag(FLAGS_dynamic_position).empty())
{
p2 = std::string("-static_position=") + absl::GetFlag(FLAGS_static_position) + std::string(",") + std::to_string(std::min(generated_signal_duration_s * 10, 3000));
}
else
{
p2 = std::string("-obs_pos_file=") + std::string(absl::GetFlag(FLAGS_dynamic_position));
}
p3 = std::string("-rinex_obs_file=") + absl::GetFlag(FLAGS_filename_rinex_obs); // RINEX 2.10 observation file output
p4 = std::string("-sig_out_file=") + absl::GetFlag(FLAGS_filename_raw_data); // Baseband signal output file. Will be stored in int8_t IQ multiplexed samples
p5 = std::string("-sampling_freq=") + std::to_string(baseband_sampling_freq); // Baseband sampling frequency [MSps]
p6 = std::string("-CN0_dBHz=") + std::to_string(cn0);
#endif
return 0;
}
int AcquisitionPerformanceTest::generate_signal()
{
pid_t wait_result;
int child_status;
std::cout << "Generating signal for " << p6 << "...\n";
char* const parmList[] = {&generator_binary[0], &generator_binary[0], &p1[0], &p2[0], &p3[0], &p4[0], &p5[0], &p6[0], nullptr};
int pid;
if ((pid = fork()) == -1)
{
perror("fork error");
}
else if (pid == 0)
{
execv(&generator_binary[0], parmList);
std::cout << "Return not expected. Must be an execv error.\n";
std::terminate();
}
wait_result = waitpid(pid, &child_status, 0);
if (wait_result == -1)
{
perror("waitpid error");
}
return 0;
}
int AcquisitionPerformanceTest::configure_receiver(double cn0, float pfa, unsigned int iter)
{
#if USE_GLOG_AND_GFLAGS
if (FLAGS_config_file_ptest.empty())
#else
if (absl::GetFlag(FLAGS_config_file_ptest).empty())
#endif
{
config = std::make_shared<InMemoryConfiguration>();
const int sampling_rate_internal = baseband_sampling_freq;
config->set_property("GNSS-SDR.internal_fs_sps", std::to_string(sampling_rate_internal));
// Set Acquisition
config->set_property("Acquisition.implementation", implementation);
config->set_property("Acquisition.item_type", "gr_complex");
config->set_property("Acquisition.doppler_max", std::to_string(doppler_max));
config->set_property("Acquisition.doppler_min", std::to_string(-doppler_max));
config->set_property("Acquisition.doppler_step", std::to_string(doppler_step));
config->set_property("Acquisition.threshold", std::to_string(pfa));
// if (FLAGS_acq_test_pfa_init > 0.0) config->supersede_property("Acquisition.pfa", std::to_string(pfa));
#if USE_GLOG_AND_GFLAGS
if (FLAGS_acq_test_pfa_init > 0.0)
#else
if (absl::GetFlag(FLAGS_acq_test_pfa_init) > 0.0)
#endif
{
config->supersede_property("Acquisition.pfa", std::to_string(pfa));
}
config->set_property("Acquisition.coherent_integration_time_ms", std::to_string(coherent_integration_time_ms));
#if USE_GLOG_AND_GFLAGS
if (FLAGS_acq_test_bit_transition_flag)
#else
if (absl::GetFlag(FLAGS_acq_test_bit_transition_flag))
#endif
{
config->set_property("Acquisition.bit_transition_flag", "true");
}
else
{
config->set_property("Acquisition.bit_transition_flag", "false");
}
#if USE_GLOG_AND_GFLAGS
config->set_property("Acquisition.max_dwells", std::to_string(FLAGS_acq_test_max_dwells));
#else
config->set_property("Acquisition.max_dwells", std::to_string(absl::GetFlag(FLAGS_acq_test_max_dwells)));
#endif
config->set_property("Acquisition.repeat_satellite", "true");
config->set_property("Acquisition.blocking", "true");
#if USE_GLOG_AND_GFLAGS
if (FLAGS_acq_test_make_two_steps)
{
config->set_property("Acquisition.make_two_steps", "true");
config->set_property("Acquisition.second_nbins", std::to_string(FLAGS_acq_test_second_nbins));
config->set_property("Acquisition.second_doppler_step", std::to_string(FLAGS_acq_test_second_doppler_step));
}
#else
if (absl::GetFlag(FLAGS_acq_test_make_two_steps))
{
config->set_property("Acquisition.make_two_steps", "true");
config->set_property("Acquisition.second_nbins", std::to_string(absl::GetFlag(FLAGS_acq_test_second_nbins)));
config->set_property("Acquisition.second_doppler_step", std::to_string(absl::GetFlag(FLAGS_acq_test_second_doppler_step)));
}
#endif
else
{
config->set_property("Acquisition.make_two_steps", "false");
}
config->set_property("Acquisition.dump", "true");
// std::string dump_file = path_str + std::string("/acquisition_") + std::to_string(cn0) + "_" + std::to_string(iter) + "_" + std::to_string(pfa);
std::string dump_file = path_str + std::string("/acquisition_") + std::to_string(static_cast<int>(cn0)) + "_" + std::to_string(iter) + "_" + std::to_string(static_cast<int>(pfa * 1.0e5));
config->set_property("Acquisition.dump_filename", dump_file);
config->set_property("Acquisition.dump_channel", std::to_string(dump_channel));
config->set_property("Acquisition.blocking_on_standby", "true");
config_f = nullptr;
}
else
{
#if USE_GLOG_AND_GFLAGS
config_f = std::make_shared<FileConfiguration>(FLAGS_config_file_ptest);
#else
config_f = std::make_shared<FileConfiguration>(absl::GetFlag(FLAGS_config_file_ptest));
#endif
config = nullptr;
}
return 0;
}
int AcquisitionPerformanceTest::run_receiver()
{
std::string file;
#if USE_GLOG_AND_GFLAGS
if (FLAGS_acq_test_input_file.empty())
#else
if (absl::GetFlag(FLAGS_acq_test_input_file).empty())
#endif
{
file = "./" + filename_raw_data;
}
else
{
#if USE_GLOG_AND_GFLAGS
file = FLAGS_acq_test_input_file;
#else
file = absl::GetFlag(FLAGS_acq_test_input_file);
#endif
}
const char* file_name = file.c_str();
gr::blocks::file_source::sptr file_source = gr::blocks::file_source::make(sizeof(int8_t), file_name, false);
gr::blocks::interleaved_char_to_complex::sptr gr_interleaved_char_to_complex = gr::blocks::interleaved_char_to_complex::make();
top_block = gr::make_top_block("Acquisition test");
auto msg_rx = AcqPerfTest_msg_rx_make(channel_internal_queue);
#if USE_GLOG_AND_GFLAGS
gr::blocks::skiphead::sptr skiphead = gr::blocks::skiphead::make(sizeof(gr_complex), FLAGS_acq_test_skiphead);
#else
gr::blocks::skiphead::sptr skiphead = gr::blocks::skiphead::make(sizeof(gr_complex), absl::GetFlag(FLAGS_acq_test_skiphead));
#endif
queue = std::make_shared<Concurrent_Queue<pmt::pmt_t>>();
gnss_synchro = Gnss_Synchro();
init();
int nsamples = floor(config->property("GNSS-SDR.internal_fs_sps", 2000000) * generated_signal_duration_s);
auto valve = gnss_sdr_make_valve(sizeof(gr_complex), nsamples, queue.get());
if (implementation == "GPS_L1_CA_PCPS_Acquisition")
{
acquisition = std::make_shared<GpsL1CaPcpsAcquisition>(config.get(), "Acquisition", 1, 0);
}
else if (implementation == "GPS_L1_CA_PCPS_Acquisition_Fine_Doppler")
{
acquisition = std::make_shared<GpsL1CaPcpsAcquisitionFineDoppler>(config.get(), "Acquisition", 1, 0);
}
else if (implementation == "Galileo_E1_PCPS_Ambiguous_Acquisition")
{
acquisition = std::make_shared<GalileoE1PcpsAmbiguousAcquisition>(config.get(), "Acquisition", 1, 0);
}
else if (implementation == "GLONASS_L1_CA_PCPS_Acquisition")
{
acquisition = std::make_shared<GlonassL1CaPcpsAcquisition>(config.get(), "Acquisition", 1, 0);
}
else if (implementation == "GLONASS_L2_CA_PCPS_Acquisition")
{
acquisition = std::make_shared<GlonassL2CaPcpsAcquisition>(config.get(), "Acquisition", 1, 0);
}
else if (implementation == "GPS_L2_M_PCPS_Acquisition")
{
acquisition = std::make_shared<GpsL2MPcpsAcquisition>(config.get(), "Acquisition", 1, 0);
}
else if (implementation == "Galileo_E5a_Pcps_Acquisition")
{
acquisition = std::make_shared<GalileoE5aPcpsAcquisition>(config.get(), "Acquisition", 1, 0);
}
else if (implementation == "GPS_L5i_PCPS_Acquisition")
{
acquisition = std::make_shared<GpsL5iPcpsAcquisition>(config.get(), "Acquisition", 1, 0);
}
else
{
bool aux = false;
EXPECT_EQ(true, aux);
}
acquisition->set_gnss_synchro(&gnss_synchro);
acquisition->set_channel(0);
acquisition->set_doppler_max(config->property("Acquisition.doppler_max", 10000));
acquisition->set_doppler_step(config->property("Acquisition.doppler_step", 500));
acquisition->set_threshold(config->property("Acquisition.threshold", 0.0));
acquisition->init();
acquisition->set_local_code();
acquisition->set_state(1); // Ensure that acquisition starts at the first sample
acquisition->connect(top_block);
acquisition->reset();
top_block->connect(file_source, 0, gr_interleaved_char_to_complex, 0);
top_block->connect(gr_interleaved_char_to_complex, 0, skiphead, 0);
top_block->connect(skiphead, 0, valve, 0);
top_block->connect(valve, 0, acquisition->get_left_block(), 0);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
start_queue();
top_block->run(); // Start threads and wait
ch_thread.join();
return 0;
}
int AcquisitionPerformanceTest::count_executions(const std::string& basename, unsigned int sat)
{
FILE* fp;
std::string argum2 = std::string("/usr/bin/find ") + path_str + std::string(" -maxdepth 1 -name ") + basename.substr(path_str.length() + 1, basename.length() - path_str.length()) + std::string("* | grep sat_") + std::to_string(sat) + std::string(" | wc -l");
char buffer[1024];
fp = popen(&argum2[0], "r");
int num_executions = 1;
if (fp == nullptr)
{
std::cout << "Failed to run command: " << argum2 << '\n';
return 0;
}
while (fgets(buffer, sizeof(buffer), fp) != nullptr)
{
std::string aux = std::string(buffer);
EXPECT_EQ(aux.empty(), false);
num_executions = std::stoi(aux);
}
pclose(fp);
return num_executions;
}
void AcquisitionPerformanceTest::plot_results()
{
#if USE_GLOG_AND_GFLAGS
if (FLAGS_plot_acq_test == true)
{
const std::string gnuplot_executable(FLAGS_gnuplot_executable);
#else
if (absl::GetFlag(FLAGS_plot_acq_test) == true)
{
const std::string gnuplot_executable(absl::GetFlag(FLAGS_gnuplot_executable));
#endif
if (gnuplot_executable.empty())
{
std::cout << "WARNING: Although the flag plot_gps_l1_tracking_test has been set to TRUE,\n";
std::cout << "gnuplot has not been found in your system.\n";
std::cout << "Test results will not be plotted.\n";
}
else
{
try
{
fs::path p(gnuplot_executable);
fs::path dir = p.parent_path();
const std::string& gnuplot_path = dir.native();
Gnuplot::set_GNUPlotPath(gnuplot_path);
Gnuplot g1("linespoints");
#if USE_GLOG_AND_GFLAGS
if (FLAGS_show_plots)
#else
if (absl::GetFlag(FLAGS_show_plots))
#endif
{
g1.showonscreen(); // window output
}
else
{
g1.disablescreen();
}
g1.cmd("set font \"Times,18\"");
g1.set_title("Receiver Operating Characteristic for GPS L1 C/A acquisition");
g1.cmd("set label 1 \"" + std::string("Coherent integration time: ") + std::to_string(config->property("Acquisition.coherent_integration_time_ms", 1)) + " ms, Non-coherent integrations: " + std::to_string(config->property("Acquisition.max_dwells", 1)) + R"( " at screen 0.12, 0.83 font "Times,16")");
g1.cmd("set logscale x");
g1.cmd("set yrange [0:1]");
g1.cmd("set xrange[0.0001:1]");
g1.cmd("set grid mxtics");
g1.cmd("set grid ytics");
g1.set_xlabel("Pfa");
g1.set_ylabel("Pd");
g1.set_grid();
g1.cmd("show grid");
for (int i = 0; i < static_cast<int>(cn0_vector.size()); i++)
{
std::vector<float> Pd_i;
std::vector<float> Pfa_i;
for (int k = 0; k < num_thresholds; k++)
{
Pd_i.push_back(Pd[i][k]);
Pfa_i.push_back(pfa_vector[k]);
}
g1.plot_xy(Pfa_i, Pd_i, "CN0 = " + std::to_string(static_cast<int>(cn0_vector[i])) + " dBHz");
}
g1.set_legend();
g1.savetops("ROC");
g1.savetopdf("ROC", 18);
Gnuplot g2("linespoints");
#if USE_GLOG_AND_GFLAGS
if (FLAGS_show_plots)
#else
if (absl::GetFlag(FLAGS_show_plots))
#endif
{
g2.showonscreen(); // window output
}
else
{
g2.disablescreen();
}
g2.cmd("set font \"Times,18\"");
g2.set_title("Receiver Operating Characteristic for GPS L1 C/A valid acquisition");
g2.cmd("set label 1 \"" + std::string("Coherent integration time: ") + std::to_string(config->property("Acquisition.coherent_integration_time_ms", 1)) + " ms, Non-coherent integrations: " + std::to_string(config->property("Acquisition.max_dwells", 1)) + R"( " at screen 0.12, 0.83 font "Times,16")");
g2.cmd("set logscale x");
g2.cmd("set yrange [0:1]");
g2.cmd("set xrange[0.0001:1]");
g2.cmd("set grid mxtics");
g2.cmd("set grid ytics");
g2.set_xlabel("Pfa");
g2.set_ylabel("Valid Pd");
g2.set_grid();
g2.cmd("show grid");
for (int i = 0; i < static_cast<int>(cn0_vector.size()); i++)
{
std::vector<float> Pd_i_correct;
std::vector<float> Pfa_i;
for (int k = 0; k < num_thresholds; k++)
{
Pd_i_correct.push_back(Pd_correct[i][k]);
Pfa_i.push_back(pfa_vector[k]);
}
g2.plot_xy(Pfa_i, Pd_i_correct, "CN0 = " + std::to_string(static_cast<int>(cn0_vector[i])) + " dBHz");
}
g2.set_legend();
g2.savetops("ROC-valid-detection");
g2.savetopdf("ROC-valid-detection", 18);
}
catch (const GnuplotException& ge)
{
std::cout << ge.what() << '\n';
}
}
}
}
TEST_F(AcquisitionPerformanceTest, ROC)
{
Tracking_True_Obs_Reader true_trk_data;
if (fs::exists(path_str))
{
std::cout << "Deleting old files at " << path_str << " ...\n";
fs::remove_all(path_str);
}
errorlib::error_code ec;
ASSERT_TRUE(fs::create_directory(path_str, ec)) << "Could not create the " << path_str << " folder.";
unsigned int cn0_index = 0;
for (double it : cn0_vector)
{
std::vector<double> meas_Pd_;
std::vector<double> meas_Pd_correct_;
std::vector<double> meas_Pfa_;
#if USE_GLOG_AND_GFLAGS
if (FLAGS_acq_test_input_file.empty())
#else
if (absl::GetFlag(FLAGS_acq_test_input_file).empty())
#endif
{
std::cout << "Execution for CN0 = " << it << " dB-Hz\n";
}
// Do N_iterations of the experiment
for (int pfa_iter = 0; pfa_iter < static_cast<int>(pfa_vector.size()); pfa_iter++)
{
#if USE_GLOG_AND_GFLAGS
if (FLAGS_acq_test_pfa_init > 0.0)
#else
if (absl::GetFlag(FLAGS_acq_test_pfa_init) > 0.0)
#endif
{
std::cout << "Setting threshold for Pfa = " << pfa_vector[pfa_iter] << '\n';
}
else
{
std::cout << "Setting threshold to " << pfa_vector[pfa_iter] << '\n';
}
// Configure the signal generator
#if USE_GLOG_AND_GFLAGS
if (FLAGS_acq_test_input_file.empty())
#else
if (absl::GetFlag(FLAGS_acq_test_input_file).empty())
#endif
{
configure_generator(it);
}
for (int iter = 0; iter < N_iterations; iter++)
{
// Generate signal raw signal samples and observations RINEX file
#if USE_GLOG_AND_GFLAGS
if (FLAGS_acq_test_input_file.empty())
#else
if (absl::GetFlag(FLAGS_acq_test_input_file).empty())
#endif
{
generate_signal();
}
for (unsigned k = 0; k < 2; k++)
{
if (k == 0)
{
#if USE_GLOG_AND_GFLAGS
observed_satellite = FLAGS_acq_test_PRN;
#else
observed_satellite = absl::GetFlag(FLAGS_acq_test_PRN);
#endif
}
else
{
#if USE_GLOG_AND_GFLAGS
observed_satellite = FLAGS_acq_test_fake_PRN;
#else
observed_satellite = absl::GetFlag(FLAGS_acq_test_fake_PRN);
#endif
}
init();
// Configure the receiver
configure_receiver(it, pfa_vector[pfa_iter], iter);
// Run it
run_receiver();
// count executions
std::string basename = path_str + std::string("/acquisition_") + std::to_string(static_cast<int>(it)) + "_" + std::to_string(iter) + "_" + std::to_string(static_cast<int>(pfa_vector[pfa_iter] * 1.0e5)) + "_" + gnss_synchro.System + "_" + gnss_synchro.Signal;
int num_executions = count_executions(basename, observed_satellite);
// Read measured data
int ch = config->property("Acquisition.dump_channel", 0);
arma::vec meas_timestamp_s = arma::zeros(num_executions, 1);
arma::vec meas_doppler = arma::zeros(num_executions, 1);
arma::vec positive_acq = arma::zeros(num_executions, 1);
arma::vec meas_acq_delay_chips = arma::zeros(num_executions, 1);
double coh_time_ms = config->property("Acquisition.coherent_integration_time_ms", 1);
std::cout << "Num executions: " << num_executions << '\n';
unsigned int fft_size = 0;
unsigned int d_consumed_samples = coh_time_ms * config->property("GNSS-SDR.internal_fs_sps", 0) * 0.001; // * (config->property("Acquisition.bit_transition_flag", false) ? 2 : 1);
if (coh_time_ms == min_integration_ms)
{
fft_size = d_consumed_samples;
}
else
{
fft_size = d_consumed_samples * 2;
}
for (int execution = 1; execution <= num_executions; execution++)
{
Acquisition_Dump_Reader acq_dump(basename,
observed_satellite,
config->property("Acquisition.doppler_max", 0),
config->property("Acquisition.doppler_step", 0),
fft_size,
ch,
execution);
acq_dump.read_binary_acq();
if (acq_dump.positive_acq)
{
// std::cout << "Meas acq_delay_samples: " << acq_dump.acq_delay_samples << " chips: " << acq_dump.acq_delay_samples / (baseband_sampling_freq * GPS_L1_CA_CODE_PERIOD_S / GPS_L1_CA_CODE_LENGTH_CHIPS) << '\n';
meas_timestamp_s(execution - 1) = acq_dump.sample_counter / baseband_sampling_freq;
meas_doppler(execution - 1) = acq_dump.acq_doppler_hz;
meas_acq_delay_chips(execution - 1) = acq_dump.acq_delay_samples / (baseband_sampling_freq * GPS_L1_CA_CODE_PERIOD_S / GPS_L1_CA_CODE_LENGTH_CHIPS);
positive_acq(execution - 1) = acq_dump.positive_acq;
}
else
{
// std::cout << "Failed acquisition.\n";
meas_timestamp_s(execution - 1) = arma::datum::inf;
meas_doppler(execution - 1) = arma::datum::inf;
meas_acq_delay_chips(execution - 1) = arma::datum::inf;
positive_acq(execution - 1) = acq_dump.positive_acq;
}
}
// Read reference data
std::string true_trk_file = std::string("./gps_l1_ca_obs_prn");
true_trk_file.append(std::to_string(observed_satellite));
true_trk_file.append(".dat");
true_trk_data.close_obs_file();
true_trk_data.open_obs_file(true_trk_file);
// load the true values
int64_t n_true_epochs = true_trk_data.num_epochs();
arma::vec true_timestamp_s = arma::zeros(n_true_epochs, 1);
arma::vec true_acc_carrier_phase_cycles = arma::zeros(n_true_epochs, 1);
arma::vec true_Doppler_Hz = arma::zeros(n_true_epochs, 1);
arma::vec true_prn_delay_chips = arma::zeros(n_true_epochs, 1);
arma::vec true_tow_s = arma::zeros(n_true_epochs, 1);
int64_t epoch_counter = 0;
int num_clean_executions = 0;
while (true_trk_data.read_binary_obs())
{
true_timestamp_s(epoch_counter) = true_trk_data.signal_timestamp_s;
true_acc_carrier_phase_cycles(epoch_counter) = true_trk_data.acc_carrier_phase_cycles;
true_Doppler_Hz(epoch_counter) = true_trk_data.doppler_l1_hz;
true_prn_delay_chips(epoch_counter) = GPS_L1_CA_CODE_LENGTH_CHIPS - true_trk_data.prn_delay_chips;
true_tow_s(epoch_counter) = true_trk_data.tow;
epoch_counter++;
// std::cout << "True PRN_Delay chips = " << GPS_L1_CA_CODE_LENGTH_CHIPS - true_trk_data.prn_delay_chips << " at " << true_trk_data.signal_timestamp_s << '\n';
}
// Process results
arma::vec clean_doppler_estimation_error;
arma::vec clean_delay_estimation_error;
if (epoch_counter > 2)
{
arma::vec true_interpolated_doppler = arma::zeros(num_executions, 1);
arma::vec true_interpolated_prn_delay_chips = arma::zeros(num_executions, 1);
interp1(true_timestamp_s, true_Doppler_Hz, meas_timestamp_s, true_interpolated_doppler);
interp1(true_timestamp_s, true_prn_delay_chips, meas_timestamp_s, true_interpolated_prn_delay_chips);
arma::vec doppler_estimation_error = true_interpolated_doppler - meas_doppler;
arma::vec delay_estimation_error = true_interpolated_prn_delay_chips - (meas_acq_delay_chips - ((1.0 / baseband_sampling_freq) / GPS_L1_CA_CHIP_PERIOD_S)); // compensate 1 sample delay
// Cut measurements without reference
for (int i = 0; i < num_executions; i++)
{
if (!std::isnan(doppler_estimation_error(i)) && !std::isnan(delay_estimation_error(i)))
{
num_clean_executions++;
}
}
clean_doppler_estimation_error = arma::zeros(num_clean_executions, 1);
clean_delay_estimation_error = arma::zeros(num_clean_executions, 1);
num_clean_executions = 0;
for (int i = 0; i < num_executions; i++)
{
if (!std::isnan(doppler_estimation_error(i)) && !std::isnan(delay_estimation_error(i)))
{
clean_doppler_estimation_error(num_clean_executions) = doppler_estimation_error(i);
clean_delay_estimation_error(num_clean_executions) = delay_estimation_error(i);
num_clean_executions++;
}
}
/* std::cout << "Doppler estimation error [Hz]: ";
for (int i = 0; i < num_executions - 1; i++)
{
std::cout << doppler_estimation_error(i) << " ";
}
std::cout << '\n';
std::cout << "Delay estimation error [chips]: ";
for (int i = 0; i < num_executions - 1; i++)
{
std::cout << delay_estimation_error(i) << " ";
}
std::cout << '\n'; */
}
if (k == 0)
{
double detected = arma::accu(positive_acq);
double computed_Pd = detected / static_cast<double>(num_executions);
if (num_executions > 0)
{
meas_Pd_.push_back(computed_Pd);
}
else
{
meas_Pd_.push_back(0.0);
}
std::cout << TEXT_BOLD_BLUE << "Probability of detection for channel=" << ch << ", CN0=" << it << " dBHz"
<< ": " << (num_executions > 0 ? computed_Pd : 0.0) << TEXT_RESET << '\n';
}
if (num_clean_executions > 0)
{
arma::vec correct_acq = arma::zeros(num_executions, 1);
double correctly_detected = 0.0;
for (int i = 0; i < num_clean_executions; i++)
{
if (abs(clean_delay_estimation_error(i)) < 0.5 && abs(clean_doppler_estimation_error(i)) < static_cast<float>(config->property("Acquisition.doppler_step", 1)))
{
correctly_detected = correctly_detected + 1.0;
}
}
double computed_Pd_correct = correctly_detected / static_cast<double>(num_clean_executions);
meas_Pd_correct_.push_back(computed_Pd_correct);
std::cout << TEXT_BOLD_BLUE << "Probability of correct detection for channel=" << ch << ", CN0=" << it << " dBHz"
<< ": " << computed_Pd_correct << TEXT_RESET << '\n';
}
else
{
// std::cout << "No reference data has been found. Maybe a non-present satellite?" << num_executions << '\n';
if (k == 1)
{
double wrongly_detected = arma::accu(positive_acq);
double computed_Pfa = wrongly_detected / static_cast<double>(num_executions);
if (num_executions > 0)
{
meas_Pfa_.push_back(computed_Pfa);
}
else
{
meas_Pfa_.push_back(0.0);
}
std::cout << TEXT_BOLD_BLUE << "Probability of false alarm for channel=" << ch << ", CN0=" << it << " dBHz"
<< ": " << (num_executions > 0 ? computed_Pfa : 0.0) << TEXT_RESET << '\n';
}
}
true_trk_data.restart();
}
}
true_trk_data.close_obs_file();
float sum_pd = static_cast<float>(std::accumulate(meas_Pd_.begin(), meas_Pd_.end(), 0.0));
float sum_pd_correct = static_cast<float>(std::accumulate(meas_Pd_correct_.begin(), meas_Pd_correct_.end(), 0.0));
float sum_pfa = static_cast<float>(std::accumulate(meas_Pfa_.begin(), meas_Pfa_.end(), 0.0));
if (!meas_Pd_.empty() && !meas_Pfa_.empty())
{
Pd[cn0_index][pfa_iter] = sum_pd / static_cast<float>(meas_Pd_.size());
Pfa[cn0_index][pfa_iter] = sum_pfa / static_cast<float>(meas_Pfa_.size());
}
else
{
if (!meas_Pd_.empty())
{
Pd[cn0_index][pfa_iter] = sum_pd / static_cast<float>(meas_Pd_.size());
}
else
{
Pd[cn0_index][pfa_iter] = 0.0;
}
if (!meas_Pfa_.empty())
{
Pfa[cn0_index][pfa_iter] = sum_pfa / static_cast<float>(meas_Pfa_.size());
}
else
{
Pfa[cn0_index][pfa_iter] = 0.0;
}
}
if (!meas_Pd_correct_.empty())
{
Pd_correct[cn0_index][pfa_iter] = sum_pd_correct / static_cast<float>(meas_Pd_correct_.size());
}
else
{
Pd_correct[cn0_index][pfa_iter] = 0.0;
}
meas_Pd_.clear();
meas_Pfa_.clear();
meas_Pd_correct_.clear();
}
cn0_index++;
}
// Compute results
unsigned int aux_index = 0;
for (double it : cn0_vector)
{
std::cout << "Results for CN0 = " << it << " dBHz:\n";
std::cout << "Pd = ";
for (int pfa_iter = 0; pfa_iter < num_thresholds; pfa_iter++)
{
std::cout << Pd[aux_index][pfa_iter] << " ";
}
std::cout << '\n';
std::cout << "Pd_correct = ";
for (int pfa_iter = 0; pfa_iter < num_thresholds; pfa_iter++)
{
std::cout << Pd_correct[aux_index][pfa_iter] << " ";
}
std::cout << '\n';
std::cout << "Pfa = ";
for (int pfa_iter = 0; pfa_iter < num_thresholds; pfa_iter++)
{
std::cout << Pfa[aux_index][pfa_iter] << " ";
}
std::cout << '\n';
aux_index++;
}
plot_results();
}