gnss-sdr/src/algorithms/telemetry_decoder/gnuradio_blocks/galileo_e5a_telemetry_decod...

649 lines
28 KiB
C++
Raw Blame History

/*!
* \file galileo_e5a_telemetry_decoder_cc.cc
* \brief Implementation of a Galileo FNAV message demodulator block
* \author Marc Sales, 2014. marcsales92(at)gmail.com
* \based on work from:
* <ul>
* <li> Javier Arribas, 2011. jarribas(at)cttc.es
* </ul>
*
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "galileo_e5a_telemetry_decoder_cc.h"
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <boost/lexical_cast.hpp>
#include <gnuradio/io_signature.h>
#include <glog/logging.h>
#include "control_message_factory.h"
#include "gnss_synchro.h"
#include "convolutional.h"
#define CRC_ERROR_LIMIT 6
using google::LogMessage;
galileo_e5a_telemetry_decoder_cc_sptr
galileo_e5a_make_telemetry_decoder_cc(Gnss_Satellite satellite, boost::shared_ptr<gr::msg_queue> queue, bool dump)
{
return galileo_e5a_telemetry_decoder_cc_sptr(new galileo_e5a_telemetry_decoder_cc(satellite, queue, dump));
}
void galileo_e5a_telemetry_decoder_cc::forecast (int noutput_items, gr_vector_int &ninput_items_required)
{
//ninput_items_required[0] = GALILEO_FNAV_SAMPLES_PER_PAGE; // set the required sample history
if (noutput_items != 0)
{
ninput_items_required[0] = GALILEO_FNAV_CODES_PER_PREAMBLE;
}
}
void galileo_e5a_telemetry_decoder_cc::viterbi_decoder(double *page_part_symbols, int *page_part_bits)
{
// int CodeLength = 240;
int CodeLength = 488;
int DataLength;
int nn, KK, mm, max_states;
int g_encoder[2];
nn = 2; // Coding rate 1/n
KK = 7; // Constraint Length
g_encoder[0] = 121; // Polynomial G1
g_encoder[1] = 91; // Polynomial G2
// g_encoder[0] = 171; // Polynomial G1
// g_encoder[1] = 133; // Polynomial G2
mm = KK - 1;
max_states = 1 << mm; // 2^mm
DataLength = (CodeLength/nn) - mm;
//create appropriate transition matrices
int *out0, *out1, *state0, *state1;
out0 = (int*)calloc( max_states, sizeof(int) );
out1 = (int*)calloc( max_states, sizeof(int) );
state0 = (int*)calloc( max_states, sizeof(int) );
state1 = (int*)calloc( max_states, sizeof(int) );
nsc_transit( out0, state0, 0, g_encoder, KK, nn );
nsc_transit( out1, state1, 1, g_encoder, KK, nn );
Viterbi(page_part_bits, out0, state0, out1, state1,
page_part_symbols, KK, nn, DataLength );
//Clean up memory
free( out0 );
free( out1 );
free( state0 );
free( state1 );
}
void galileo_e5a_telemetry_decoder_cc::deinterleaver(int rows, int cols, double *in, double *out)
{
for (int r = 0; r < rows; r++)
{
for(int c = 0; c < cols; c++)
{
out[c*rows + r] = in[r*cols + c];
}
}
}
void galileo_e5a_telemetry_decoder_cc::decode_word(double *page_symbols,int frame_length)
{
double page_symbols_deint[frame_length];
// 1. De-interleave
galileo_e5a_telemetry_decoder_cc::deinterleaver(GALILEO_FNAV_INTERLEAVER_ROWS, GALILEO_FNAV_INTERLEAVER_COLS, page_symbols, page_symbols_deint);
// 2. Viterbi decoder
// 2.1 Take into account the NOT gate in G2 polynomial (Galileo ICD Figure 13, FEC encoder)
// 2.2 Take into account the possible inversion of the polarity due to PLL lock at 180<38>
for (int i = 0; i < frame_length; i++)
{
if ((i + 1) % 2 == 0)
{
page_symbols_deint[i] = -page_symbols_deint[i];
}
}
int page_bits[frame_length/2];
galileo_e5a_telemetry_decoder_cc::viterbi_decoder(page_symbols_deint, page_bits);
// 3. Call the Galileo page decoder
std::string page_String;
for(int i = 0; i < frame_length; i++)
{
if (page_bits[i] > 0)
{
page_String.push_back('1');
}
else
{
page_String.push_back('0');
}
}
// DECODE COMPLETE WORD (even + odd) and TEST CRC
d_nav.split_page(page_String);
if(d_nav.flag_CRC_test == true)
{
LOG(INFO) << "Galileo CRC correct on channel " << d_channel << " from satellite " << d_satellite;
std::cout << "Galileo CRC correct on channel " << d_channel << " from satellite " << d_satellite << std::endl;
}
else
{
std::cout << "Galileo CRC error on channel " << d_channel << " from satellite " << d_satellite << std::endl;
LOG(INFO)<< "Galileo CRC error on channel " << d_channel << " from satellite " << d_satellite;
}
// 4. Push the new navigation data to the queues
if (d_nav.have_new_ephemeris() == true)
{
// get ephemeris object for this SV
Galileo_Ephemeris ephemeris = d_nav.get_ephemeris();//notice that the read operation will clear the valid flag
//std::cout<<"New Galileo Ephemeris received for SV "<<d_satellite.get_PRN()<<std::endl;
d_ephemeris_queue->push(ephemeris);
}
if (d_nav.have_new_iono_and_GST() == true)
{
Galileo_Iono iono = d_nav.get_iono(); //notice that the read operation will clear the valid flag
//std::cout<<"New Galileo IONO model (and UTC) received for SV "<<d_satellite.get_PRN()<<std::endl;
d_iono_queue->push(iono);
}
if (d_nav.have_new_utc_model() == true)
{
Galileo_Utc_Model utc_model = d_nav.get_utc_model(); //notice that the read operation will clear the valid flag
//std::cout<<"New Galileo UTC model received for SV "<<d_satellite.get_PRN()<<std::endl;
d_utc_model_queue->push(utc_model);
}
}
galileo_e5a_telemetry_decoder_cc::galileo_e5a_telemetry_decoder_cc(
Gnss_Satellite satellite,
boost::shared_ptr<gr::msg_queue> queue,
bool dump) :
gr::block("galileo_e5a_telemetry_decoder_cc", gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)),
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
{
// initialize internal vars
d_queue = queue;
d_dump = dump;
d_satellite = Gnss_Satellite(satellite.get_system(), satellite.get_PRN());
LOG(INFO) << "GALILEO E5A TELEMETRY PROCESSING: satellite " << d_satellite;
//d_samples_per_symbol = ( Galileo_E5a_CODE_CHIP_RATE_HZ / Galileo_E5a_CODE_LENGTH_CHIPS ) / Galileo_E1_B_SYMBOL_RATE_BPS;
// set the preamble
//unsigned short int preambles_bits[GALILEO_FNAV_PREAMBLE_LENGTH_BITS] = GALILEO_FNAV_PREAMBLE;
for (int i = 0; i < GALILEO_FNAV_PREAMBLE_LENGTH_BITS; i++)
{
if (GALILEO_FNAV_PREAMBLE.at(i) == '0')
{
d_preamble_bits[i] = 1;
}
else
{
d_preamble_bits[i] = -1;
}
}
// memcpy((unsigned short int*)this->d_preambles_bits, (unsigned short int*)preambles_bits, GALILEO_FNAV_PREAMBLE_LENGTH_BITS*sizeof(unsigned short int));
// // preamble bits to sampled symbols
// d_preambles_symbols = (signed int*)malloc(sizeof(signed int) * GALILEO_FNAV_SAMPLES_PER_PREAMBLE);
// int n = 0;
// for (int i = 0; i < GALILEO_FNAV_PREAMBLE_LENGTH_BITS; i++)
// {
// for (unsigned int j = 0; j < GALILEO_FNAV_SAMPLES_PER_SYMBOL; j++)
// {
// if (d_preambles_bits[i] == 1)
// {
// d_preambles_symbols[n] = 1;
// }
// else
// {
// d_preambles_symbols[n] = -1;
// }
// n++;
// }
// }
//
d_sample_counter = 0;
d_state = 0;
d_preamble_lock = false;
d_preamble_index = 0;
d_preamble_time_seconds = 0;
d_flag_frame_sync = false;
d_current_symbol = 0;
d_prompt_counter = 0;
d_symbol_counter = 0;
d_TOW_at_Preamble = 0;
d_TOW_at_current_symbol = 0;
d_CRC_error_counter = 0;
d_sign_init = 0;
d_flag_preamble = false;
d_ephemeris_queue = 0;
d_iono_queue = 0;
d_utc_model_queue = 0;
d_almanac_queue = 0;
d_channel = 0;
Prn_timestamp_at_preamble_ms = 0;
flag_TOW_set = false;
}
galileo_e5a_telemetry_decoder_cc::~galileo_e5a_telemetry_decoder_cc()
{
d_dump_file.close();
}
int galileo_e5a_telemetry_decoder_cc::general_work (int noutput_items, gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
//
const Gnss_Synchro **in = (const Gnss_Synchro **) &input_items[0]; //Get the input samples pointer
Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0];
/* Terminology: Prompt: output from tracking Prompt correlator (Prompt samples)
* Symbol: encoded navigation bits. 1 symbol = 20 samples in E5a
* Bit: decoded navigation bits forming words as described in Galileo ICD
* States: 0 Receiving dummy samples.
* 1 Preamble not locked
* 3 Preamble lock
*/
switch (d_state)
{
case 0:
{
if (in[0][0].Prompt_I != 0)
{
d_current_symbol += in[0][0].Prompt_I;
if (d_prompt_counter == GALILEO_FNAV_CODES_PER_SYMBOL - 1)
{
if (d_current_symbol > 0)
{
d_page_symbols[d_symbol_counter] = 1;
}
else
{
d_page_symbols[d_symbol_counter] = -1;
}
d_current_symbol = 0;
d_symbol_counter++;
d_prompt_counter = 0;
if (d_symbol_counter == GALILEO_FNAV_PREAMBLE_LENGTH_BITS - 1)
{
d_state = 1;
}
}
else
{
d_prompt_counter++;
}
}
break;
}
case 1:
{
d_current_symbol += in[0][0].Prompt_I;
if (d_prompt_counter == GALILEO_FNAV_CODES_PER_SYMBOL - 1)
{
if (d_current_symbol > 0)
{
d_page_symbols[d_symbol_counter] = 1;
}
else
{
d_page_symbols[d_symbol_counter] = -1;
}
// d_page_symbols[d_symbol_counter] = d_current_symbol_float/(float)GALILEO_FNAV_CODES_PER_SYMBOL;
d_current_symbol = 0;
d_symbol_counter++;
d_prompt_counter = 0;
// **** Attempt Preamble correlation ****
bool corr_flag=true;
int corr_sign = 0; // sequence can be found inverted
// corr_sign = d_preamble_bits[0] * d_page_symbols[d_symbol_counter - GALILEO_FNAV_PREAMBLE_LENGTH_BITS];
// for (int i = 1; i < GALILEO_FNAV_PREAMBLE_LENGTH_BITS; i++)
// {
// if ((d_preamble_bits[i] * d_page_symbols[i + d_symbol_counter - GALILEO_FNAV_PREAMBLE_LENGTH_BITS]) != corr_sign)
// {
// //exit for if one bit doesn't correlate
// corr_flag = false;
// break;
// }
// }
// check if the preamble starts positive correlated or negative correlated
if (d_page_symbols[d_symbol_counter - GALILEO_FNAV_PREAMBLE_LENGTH_BITS] < 0) // symbols clipping
{
corr_sign=-d_preamble_bits[0];
}
else
{
corr_sign=d_preamble_bits[0];
}
// the preamble is fully correlated only if maintains corr_sign along the whole sequence
for (int i = 1; i < GALILEO_FNAV_PREAMBLE_LENGTH_BITS; i++)
{
if (d_page_symbols[d_symbol_counter - GALILEO_FNAV_PREAMBLE_LENGTH_BITS + i] < 0 && d_preamble_bits[i]+corr_sign != 0)
{
//exit for
corr_flag=false;
break;
}
if (d_page_symbols[d_symbol_counter - GALILEO_FNAV_PREAMBLE_LENGTH_BITS + i] > 0 && d_preamble_bits[i]+corr_sign == 0)
{
//exit for
corr_flag=false;
break;
}
}
//
if (corr_flag==true) // preamble fully correlates
{
d_preamble_index = d_sample_counter - GALILEO_FNAV_CODES_PER_PREAMBLE;//record the preamble sample stamp. Remember correlation appears at the end of the preamble in this design
LOG(INFO) << "Preamble detection for Galileo SAT " << this->d_satellite << std::endl;
d_symbol_counter = 0; // d_page_symbols start right after preamble and finish at the end of next preamble.
d_state = 2; // preamble lock
}
if (d_symbol_counter >= GALILEO_FNAV_SYMBOLS_PER_PAGE + GALILEO_FNAV_PREAMBLE_LENGTH_BITS)
{
d_symbol_counter = GALILEO_FNAV_PREAMBLE_LENGTH_BITS; // prevents overflow
}
}
else
{
d_prompt_counter++;
}
break;
}
case 2:
{
d_current_symbol += in[0][0].Prompt_I;
if (d_prompt_counter == GALILEO_FNAV_CODES_PER_SYMBOL - 1)
{
if (d_current_symbol > 0)
{
d_page_symbols[d_symbol_counter] = 1;
}
else
{
d_page_symbols[d_symbol_counter] = -1;
}
// d_page_symbols[d_symbol_counter] = d_current_symbol_float/(float)GALILEO_FNAV_CODES_PER_SYMBOL;
d_current_symbol = 0;
d_symbol_counter++;
d_prompt_counter = 0;
// At the right sample stamp, check preamble synchro
if (d_sample_counter == d_preamble_index + GALILEO_FNAV_CODES_PER_PAGE + GALILEO_FNAV_CODES_PER_PREAMBLE)
{
// **** Attempt Preamble correlation ****
bool corr_flag = true;
int corr_sign = 0; // sequence can be found inverted
// corr_sign = d_preamble_bits[0] * d_page_symbols[d_symbol_counter - GALILEO_FNAV_PREAMBLE_LENGTH_BITS];
// for (int i = 1; i < GALILEO_FNAV_PREAMBLE_LENGTH_BITS; i++)
// {
// if ((d_preamble_bits[i] * d_page_symbols[i + d_symbol_counter - GALILEO_FNAV_PREAMBLE_LENGTH_BITS]) != corr_sign)
// {
// //exit for if one bit doesn't correlate
// corr_flag = false;
// break;
// }
// }
// check if the preamble starts positive correlated or negative correlated
if (d_page_symbols[d_symbol_counter - GALILEO_FNAV_PREAMBLE_LENGTH_BITS] < 0) // symbols clipping
{
corr_sign=-d_preamble_bits[0];
}
else
{
corr_sign=d_preamble_bits[0];
}
// the preamble is fully correlated only if maintains corr_sign along the whole sequence
for (int i = 1; i < GALILEO_FNAV_PREAMBLE_LENGTH_BITS; i++)
{
if (d_page_symbols[d_symbol_counter - GALILEO_FNAV_PREAMBLE_LENGTH_BITS + i] < 0 && d_preamble_bits[i]+corr_sign != 0)
{
//exit for
corr_flag=false;
break;
}
if (d_page_symbols[d_symbol_counter - GALILEO_FNAV_PREAMBLE_LENGTH_BITS + i] > 0 && d_preamble_bits[i]+corr_sign == 0)
{
//exit for
corr_flag=false;
break;
}
}
if (corr_flag==true) // NEW PREAMBLE RECEIVED. DECODE PAGE
{
d_preamble_index = d_sample_counter - GALILEO_FNAV_CODES_PER_PREAMBLE;//record the preamble sample stamp
// DECODE WORD
decode_word(d_page_symbols, GALILEO_FNAV_SYMBOLS_PER_PAGE - GALILEO_FNAV_PREAMBLE_LENGTH_BITS);
// CHECK CRC
if (d_nav.flag_CRC_test == true)
{
d_CRC_error_counter = 0;
d_flag_preamble = true; //valid preamble indicator (initialized to false every work())
d_preamble_time_seconds = in[0][0].Tracking_timestamp_secs - (static_cast<double>(GALILEO_FNAV_CODES_PER_PAGE+GALILEO_FNAV_CODES_PER_PREAMBLE) * GALILEO_E5a_CODE_PERIOD); //record the PRN start sample index associated to the preamble start.
if (!d_flag_frame_sync)
{
d_flag_frame_sync = true;
LOG(INFO) <<" Frame sync SAT " << this->d_satellite << " with preamble start at " << d_preamble_time_seconds << " [s]";
}
d_symbol_counter = 0; // d_page_symbols start right after preamble and finish at the end of next preamble.
}
else
{
d_CRC_error_counter++;
if (d_CRC_error_counter > CRC_ERROR_LIMIT)
{
LOG(INFO) << "Lost of frame sync SAT " << this->d_satellite;
d_state = 1;
d_symbol_counter = GALILEO_FNAV_PREAMBLE_LENGTH_BITS; // prevents overflow
d_flag_frame_sync = false;
}
else
{
d_symbol_counter = 0; // d_page_symbols start right after preamble and finish at the end of next preamble.
}
}
}
}
}
else
{
d_prompt_counter++;
}
break;
}
}
consume_each(1);
// UPDATE GNSS SYNCHRO DATA
Gnss_Synchro current_synchro_data; //structure to save the synchronization information and send the output object to the next block
//1. Copy the current tracking output
current_synchro_data = in[0][0];
//2. Add the telemetry decoder information
if (this->d_flag_preamble == true and d_nav.flag_TOW_set == true)
//update TOW at the preamble instant
//We expect a preamble each 10 seconds (FNAV page period)
{
Prn_timestamp_at_preamble_ms = d_preamble_time_seconds * 1000;
//Prn_timestamp_at_preamble_ms = in[0][0].Tracking_timestamp_secs * 1000.0;
if (d_nav.flag_TOW_1 == true)
{
d_TOW_at_Preamble = d_nav.FNAV_TOW_1;
d_TOW_at_current_symbol = d_TOW_at_Preamble + (static_cast<double>(GALILEO_FNAV_CODES_PER_PAGE+GALILEO_FNAV_CODES_PER_PREAMBLE) * GALILEO_E5a_CODE_PERIOD);
d_nav.flag_TOW_1 = false;
}
if (d_nav.flag_TOW_2 == true)
{
d_TOW_at_Preamble = d_nav.FNAV_TOW_2;
d_TOW_at_current_symbol = d_TOW_at_Preamble + (static_cast<double>(GALILEO_FNAV_CODES_PER_PAGE+GALILEO_FNAV_CODES_PER_PREAMBLE) * GALILEO_E5a_CODE_PERIOD);
d_nav.flag_TOW_2 = false;
}
if (d_nav.flag_TOW_3 == true)
{
d_TOW_at_Preamble = d_nav.FNAV_TOW_3;
d_TOW_at_current_symbol = d_TOW_at_Preamble + (static_cast<double>(GALILEO_FNAV_CODES_PER_PAGE+GALILEO_FNAV_CODES_PER_PREAMBLE) * GALILEO_E5a_CODE_PERIOD);
d_nav.flag_TOW_3 = false;
}
if (d_nav.flag_TOW_4 == true)
{
d_TOW_at_Preamble = d_nav.FNAV_TOW_4;
d_TOW_at_current_symbol = d_TOW_at_Preamble + (static_cast<double>(GALILEO_FNAV_CODES_PER_PAGE+GALILEO_FNAV_CODES_PER_PREAMBLE) * GALILEO_E5a_CODE_PERIOD);
d_nav.flag_TOW_4 = false;
}
else
{
//this page has no timming information
d_TOW_at_Preamble = d_TOW_at_Preamble + GALILEO_FNAV_SECONDS_PER_PAGE;
d_TOW_at_current_symbol = d_TOW_at_current_symbol + GALILEO_E5a_CODE_PERIOD;
}
}
else //if there is not a new preamble, we define the TOW of the current symbol
{
d_TOW_at_current_symbol = d_TOW_at_current_symbol + GALILEO_E5a_CODE_PERIOD;
}
//if (d_flag_frame_sync == true and d_nav.flag_TOW_set==true and d_nav.flag_CRC_test == true)
if (d_flag_frame_sync == true and d_nav.flag_TOW_set == true)
{
current_synchro_data.Flag_valid_word = true;
}
else
{
current_synchro_data.Flag_valid_word = false;
}
current_synchro_data.d_TOW = d_TOW_at_Preamble;
current_synchro_data.d_TOW_at_current_symbol = d_TOW_at_current_symbol;
current_synchro_data.Flag_preamble = d_flag_preamble;
current_synchro_data.Prn_timestamp_ms = in[0][0].Tracking_timestamp_secs * 1000.0;
current_synchro_data.Prn_timestamp_at_preamble_ms = Prn_timestamp_at_preamble_ms;
if(d_dump == true)
{
// MULTIPLEXED FILE RECORDING - Record results to file
try
{
double tmp_double;
tmp_double = d_TOW_at_current_symbol;
d_dump_file.write((char*)&tmp_double, sizeof(double));
tmp_double = current_synchro_data.Prn_timestamp_ms;
d_dump_file.write((char*)&tmp_double, sizeof(double));
tmp_double = d_TOW_at_Preamble;
d_dump_file.write((char*)&tmp_double, sizeof(double));
}
catch (const std::ifstream::failure& e)
{
LOG(WARNING) << "Exception writing observables dump file " << e.what();
}
}
d_sample_counter++; //count for the processed samples
//3. Make the output (copy the object contents to the GNURadio reserved memory)
*out[0] = current_synchro_data;
if((noutput_items == 0) || (ninput_items[0] == 0))
{
LOG(WARNING) << "noutput_items = 0";
}
return 1;
}
void galileo_e5a_telemetry_decoder_cc::set_satellite(Gnss_Satellite satellite)
{
d_satellite = Gnss_Satellite(satellite.get_system(), satellite.get_PRN());
DLOG(INFO) << "Setting decoder Finite State Machine to satellite " << d_satellite;
DLOG(INFO) << "Navigation Satellite set to " << d_satellite;
}
void galileo_e5a_telemetry_decoder_cc::set_channel(int channel)
{
d_channel = channel;
LOG(INFO) << "Navigation channel set to " << channel;
// ############# ENABLE DATA FILE LOG #################
if (d_dump == true)
{
if (d_dump_file.is_open() == false)
{
try
{
d_dump_filename = "telemetry";
d_dump_filename.append(boost::lexical_cast<std::string>(d_channel));
d_dump_filename.append(".dat");
d_dump_file.exceptions ( std::ifstream::failbit | std::ifstream::badbit );
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
LOG(INFO) << "Telemetry decoder dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str();
}
catch (const std::ifstream::failure& e)
{
LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e.what();
}
}
}
}
void galileo_e5a_telemetry_decoder_cc::set_ephemeris_queue(concurrent_queue<Galileo_Ephemeris> *ephemeris_queue)
{
d_ephemeris_queue = ephemeris_queue;
}
void galileo_e5a_telemetry_decoder_cc::set_iono_queue(concurrent_queue<Galileo_Iono> *iono_queue)
{
d_iono_queue = iono_queue;
}
void galileo_e5a_telemetry_decoder_cc::set_almanac_queue(concurrent_queue<Galileo_Almanac> *almanac_queue)
{
d_almanac_queue = almanac_queue;
}
void galileo_e5a_telemetry_decoder_cc::set_utc_model_queue(concurrent_queue<Galileo_Utc_Model> *utc_model_queue)
{
d_utc_model_queue = utc_model_queue;
}