mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2024-11-19 16:24:58 +00:00
870 lines
36 KiB
C++
870 lines
36 KiB
C++
/*!
|
|
* \file pcps_acquisition.cc
|
|
* \brief This class implements a Parallel Code Phase Search Acquisition
|
|
* \authors <ul>
|
|
* <li> Javier Arribas, 2011. jarribas(at)cttc.es
|
|
* <li> Luis Esteve, 2012. luis(at)epsilon-formacion.com
|
|
* <li> Marc Molina, 2013. marc.molina.pena@gmail.com
|
|
* <li> Cillian O'Driscoll, 2017. cillian(at)ieee.org
|
|
* </ul>
|
|
*
|
|
* -------------------------------------------------------------------------
|
|
*
|
|
* Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
|
|
*
|
|
* GNSS-SDR is a software defined Global Navigation
|
|
* Satellite Systems receiver
|
|
*
|
|
* This file is part of GNSS-SDR.
|
|
*
|
|
* GNSS-SDR is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* GNSS-SDR is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
|
|
*
|
|
* -------------------------------------------------------------------------
|
|
*/
|
|
|
|
#include "pcps_acquisition.h"
|
|
#include "GPS_L1_CA.h" // for GPS_TWO_PI
|
|
#include "GLONASS_L1_L2_CA.h" // for GLONASS_TWO_PI"
|
|
#include <glog/logging.h>
|
|
#include <gnuradio/io_signature.h>
|
|
#include <matio.h>
|
|
#include <volk_gnsssdr/volk_gnsssdr.h>
|
|
#include <cstring>
|
|
|
|
|
|
using google::LogMessage;
|
|
|
|
pcps_acquisition_sptr pcps_make_acquisition(const Acq_Conf& conf_)
|
|
{
|
|
return pcps_acquisition_sptr(new pcps_acquisition(conf_));
|
|
}
|
|
|
|
|
|
pcps_acquisition::pcps_acquisition(const Acq_Conf& conf_) : gr::block("pcps_acquisition",
|
|
gr::io_signature::make(1, 1, conf_.it_size * conf_.sampled_ms * conf_.samples_per_ms * (conf_.bit_transition_flag ? 2 : 1)),
|
|
gr::io_signature::make(0, 0, conf_.it_size * conf_.sampled_ms * conf_.samples_per_ms * (conf_.bit_transition_flag ? 2 : 1)))
|
|
{
|
|
this->message_port_register_out(pmt::mp("events"));
|
|
|
|
acq_parameters = conf_;
|
|
d_sample_counter = 0; // SAMPLE COUNTER
|
|
d_active = false;
|
|
d_positive_acq = 0;
|
|
d_state = 0;
|
|
d_old_freq = 0;
|
|
d_num_noncoherent_integrations_counter = 0;
|
|
d_consumed_samples = acq_parameters.sampled_ms * acq_parameters.samples_per_ms * (acq_parameters.bit_transition_flag ? 2 : 1);
|
|
if (acq_parameters.sampled_ms == 1)
|
|
{
|
|
d_fft_size = d_consumed_samples;
|
|
}
|
|
else
|
|
{
|
|
d_fft_size = d_consumed_samples * 2;
|
|
}
|
|
//d_fft_size = next power of two? ////
|
|
d_mag = 0;
|
|
d_input_power = 0.0;
|
|
d_num_doppler_bins = 0;
|
|
d_threshold = 0.0;
|
|
d_doppler_step = 0;
|
|
d_doppler_center_step_two = 0.0;
|
|
d_test_statistics = 0.0;
|
|
d_channel = 0;
|
|
if (conf_.it_size == sizeof(gr_complex))
|
|
{
|
|
d_cshort = false;
|
|
}
|
|
else
|
|
{
|
|
d_cshort = true;
|
|
}
|
|
|
|
// COD:
|
|
// Experimenting with the overlap/save technique for handling bit trannsitions
|
|
// The problem: Circular correlation is asynchronous with the received code.
|
|
// In effect the first code phase used in the correlation is the current
|
|
// estimate of the code phase at the start of the input buffer. If this is 1/2
|
|
// of the code period a bit transition would move all the signal energy into
|
|
// adjacent frequency bands at +/- 1/T where T is the integration time.
|
|
//
|
|
// We can avoid this by doing linear correlation, effectively doubling the
|
|
// size of the input buffer and padding the code with zeros.
|
|
if (acq_parameters.bit_transition_flag)
|
|
{
|
|
d_fft_size = d_consumed_samples * 2;
|
|
acq_parameters.max_dwells = 1; // Activation of acq_parameters.bit_transition_flag invalidates the value of acq_parameters.max_dwells
|
|
}
|
|
|
|
d_tmp_buffer = static_cast<float*>(volk_gnsssdr_malloc(d_fft_size * sizeof(float), volk_gnsssdr_get_alignment()));
|
|
d_fft_codes = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
|
|
d_magnitude = static_cast<float*>(volk_gnsssdr_malloc(d_fft_size * sizeof(float), volk_gnsssdr_get_alignment()));
|
|
d_input_signal = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
|
|
|
|
// Direct FFT
|
|
d_fft_if = new gr::fft::fft_complex(d_fft_size, true);
|
|
|
|
// Inverse FFT
|
|
d_ifft = new gr::fft::fft_complex(d_fft_size, false);
|
|
|
|
d_gnss_synchro = 0;
|
|
d_grid_doppler_wipeoffs = nullptr;
|
|
d_grid_doppler_wipeoffs_step_two = nullptr;
|
|
d_magnitude_grid = nullptr;
|
|
d_worker_active = false;
|
|
d_data_buffer = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_consumed_samples * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
|
|
if (d_cshort)
|
|
{
|
|
d_data_buffer_sc = static_cast<lv_16sc_t*>(volk_gnsssdr_malloc(d_consumed_samples * sizeof(lv_16sc_t), volk_gnsssdr_get_alignment()));
|
|
}
|
|
else
|
|
{
|
|
d_data_buffer_sc = nullptr;
|
|
}
|
|
grid_ = arma::fmat();
|
|
d_step_two = false;
|
|
d_dump_number = 0;
|
|
d_dump_channel = acq_parameters.dump_channel;
|
|
d_samplesPerChip = acq_parameters.samples_per_chip;
|
|
// todo: CFAR statistic not available for non-coherent integration
|
|
if (acq_parameters.max_dwells == 1)
|
|
{
|
|
d_use_CFAR_algorithm_flag = acq_parameters.use_CFAR_algorithm_flag;
|
|
}
|
|
else
|
|
{
|
|
d_use_CFAR_algorithm_flag = false;
|
|
}
|
|
}
|
|
|
|
|
|
pcps_acquisition::~pcps_acquisition()
|
|
{
|
|
if (d_num_doppler_bins > 0)
|
|
{
|
|
for (unsigned int i = 0; i < d_num_doppler_bins; i++)
|
|
{
|
|
volk_gnsssdr_free(d_grid_doppler_wipeoffs[i]);
|
|
volk_gnsssdr_free(d_magnitude_grid[i]);
|
|
}
|
|
delete[] d_grid_doppler_wipeoffs;
|
|
delete[] d_magnitude_grid;
|
|
}
|
|
if (acq_parameters.make_2_steps)
|
|
{
|
|
for (unsigned int i = 0; i < acq_parameters.num_doppler_bins_step2; i++)
|
|
{
|
|
volk_gnsssdr_free(d_grid_doppler_wipeoffs_step_two[i]);
|
|
}
|
|
delete[] d_grid_doppler_wipeoffs_step_two;
|
|
}
|
|
volk_gnsssdr_free(d_fft_codes);
|
|
volk_gnsssdr_free(d_magnitude);
|
|
volk_gnsssdr_free(d_tmp_buffer);
|
|
volk_gnsssdr_free(d_input_signal);
|
|
delete d_ifft;
|
|
delete d_fft_if;
|
|
volk_gnsssdr_free(d_data_buffer);
|
|
if (d_cshort)
|
|
{
|
|
volk_gnsssdr_free(d_data_buffer_sc);
|
|
}
|
|
}
|
|
|
|
|
|
void pcps_acquisition::set_local_code(std::complex<float>* code)
|
|
{
|
|
// reset the intermediate frequency
|
|
d_old_freq = 0;
|
|
// This will check if it's fdma, if yes will update the intermediate frequency and the doppler grid
|
|
if (is_fdma())
|
|
{
|
|
update_grid_doppler_wipeoffs();
|
|
}
|
|
// COD
|
|
// Here we want to create a buffer that looks like this:
|
|
// [ 0 0 0 ... 0 c_0 c_1 ... c_L]
|
|
// where c_i is the local code and there are L zeros and L chips
|
|
gr::thread::scoped_lock lock(d_setlock); // require mutex with work function called by the scheduler
|
|
if (acq_parameters.bit_transition_flag)
|
|
{
|
|
int offset = d_fft_size / 2;
|
|
std::fill_n(d_fft_if->get_inbuf(), offset, gr_complex(0.0, 0.0));
|
|
memcpy(d_fft_if->get_inbuf() + offset, code, sizeof(gr_complex) * offset);
|
|
}
|
|
else
|
|
{
|
|
if (acq_parameters.sampled_ms == 1)
|
|
{
|
|
memcpy(d_fft_if->get_inbuf(), code, sizeof(gr_complex) * d_consumed_samples);
|
|
}
|
|
else
|
|
{
|
|
std::fill_n(d_fft_if->get_inbuf(), d_fft_size - d_consumed_samples, gr_complex(0.0, 0.0));
|
|
memcpy(d_fft_if->get_inbuf() + d_consumed_samples, code, sizeof(gr_complex) * d_consumed_samples);
|
|
}
|
|
}
|
|
|
|
d_fft_if->execute(); // We need the FFT of local code
|
|
volk_32fc_conjugate_32fc(d_fft_codes, d_fft_if->get_outbuf(), d_fft_size);
|
|
}
|
|
|
|
|
|
bool pcps_acquisition::is_fdma()
|
|
{
|
|
// Dealing with FDMA system
|
|
if (strcmp(d_gnss_synchro->Signal, "1G") == 0)
|
|
{
|
|
d_old_freq += DFRQ1_GLO * GLONASS_PRN.at(d_gnss_synchro->PRN);
|
|
LOG(INFO) << "Trying to acquire SV PRN " << d_gnss_synchro->PRN << " with freq " << d_old_freq << " in Glonass Channel " << GLONASS_PRN.at(d_gnss_synchro->PRN) << std::endl;
|
|
return true;
|
|
}
|
|
else if (strcmp(d_gnss_synchro->Signal, "2G") == 0)
|
|
{
|
|
d_old_freq += DFRQ2_GLO * GLONASS_PRN.at(d_gnss_synchro->PRN);
|
|
LOG(INFO) << "Trying to acquire SV PRN " << d_gnss_synchro->PRN << " with freq " << d_old_freq << " in Glonass Channel " << GLONASS_PRN.at(d_gnss_synchro->PRN) << std::endl;
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
void pcps_acquisition::update_local_carrier(gr_complex* carrier_vector, int correlator_length_samples, float freq)
|
|
{
|
|
float phase_step_rad = GPS_TWO_PI * freq / static_cast<float>(acq_parameters.fs_in);
|
|
float _phase[1];
|
|
_phase[0] = 0;
|
|
volk_gnsssdr_s32f_sincos_32fc(carrier_vector, -phase_step_rad, _phase, correlator_length_samples);
|
|
}
|
|
|
|
|
|
void pcps_acquisition::init()
|
|
{
|
|
d_gnss_synchro->Flag_valid_acquisition = false;
|
|
d_gnss_synchro->Flag_valid_symbol_output = false;
|
|
d_gnss_synchro->Flag_valid_pseudorange = false;
|
|
d_gnss_synchro->Flag_valid_word = false;
|
|
|
|
d_gnss_synchro->Acq_delay_samples = 0.0;
|
|
d_gnss_synchro->Acq_doppler_hz = 0.0;
|
|
d_gnss_synchro->Acq_samplestamp_samples = 0;
|
|
d_mag = 0.0;
|
|
d_input_power = 0.0;
|
|
|
|
d_num_doppler_bins = static_cast<unsigned int>(std::ceil(static_cast<double>(static_cast<int>(acq_parameters.doppler_max) - static_cast<int>(-acq_parameters.doppler_max)) / static_cast<double>(d_doppler_step)));
|
|
|
|
// Create the carrier Doppler wipeoff signals
|
|
d_grid_doppler_wipeoffs = new gr_complex*[d_num_doppler_bins];
|
|
if (acq_parameters.make_2_steps)
|
|
{
|
|
d_grid_doppler_wipeoffs_step_two = new gr_complex*[acq_parameters.num_doppler_bins_step2];
|
|
for (unsigned int doppler_index = 0; doppler_index < acq_parameters.num_doppler_bins_step2; doppler_index++)
|
|
{
|
|
d_grid_doppler_wipeoffs_step_two[doppler_index] = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
|
|
}
|
|
}
|
|
|
|
d_magnitude_grid = new float*[d_num_doppler_bins];
|
|
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
|
|
{
|
|
d_grid_doppler_wipeoffs[doppler_index] = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
|
|
d_magnitude_grid[doppler_index] = static_cast<float*>(volk_gnsssdr_malloc(d_fft_size * sizeof(float), volk_gnsssdr_get_alignment()));
|
|
int doppler = -static_cast<int>(acq_parameters.doppler_max) + d_doppler_step * doppler_index;
|
|
update_local_carrier(d_grid_doppler_wipeoffs[doppler_index], d_fft_size, d_old_freq + doppler);
|
|
}
|
|
d_worker_active = false;
|
|
|
|
if (acq_parameters.dump)
|
|
{
|
|
unsigned int effective_fft_size = (acq_parameters.bit_transition_flag ? (d_fft_size / 2) : d_fft_size);
|
|
grid_ = arma::fmat(effective_fft_size, d_num_doppler_bins, arma::fill::zeros);
|
|
}
|
|
}
|
|
|
|
|
|
void pcps_acquisition::update_grid_doppler_wipeoffs()
|
|
{
|
|
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
|
|
{
|
|
int doppler = -static_cast<int>(acq_parameters.doppler_max) + d_doppler_step * doppler_index;
|
|
update_local_carrier(d_grid_doppler_wipeoffs[doppler_index], d_fft_size, d_old_freq + doppler);
|
|
}
|
|
}
|
|
|
|
|
|
void pcps_acquisition::update_grid_doppler_wipeoffs_step2()
|
|
{
|
|
for (unsigned int doppler_index = 0; doppler_index < acq_parameters.num_doppler_bins_step2; doppler_index++)
|
|
{
|
|
float doppler = (static_cast<float>(doppler_index) - static_cast<float>(acq_parameters.num_doppler_bins_step2) / 2.0) * acq_parameters.doppler_step2;
|
|
update_local_carrier(d_grid_doppler_wipeoffs_step_two[doppler_index], d_fft_size, d_doppler_center_step_two + doppler);
|
|
}
|
|
}
|
|
|
|
|
|
void pcps_acquisition::set_state(int state)
|
|
{
|
|
gr::thread::scoped_lock lock(d_setlock); // require mutex with work function called by the scheduler
|
|
d_state = state;
|
|
if (d_state == 1)
|
|
{
|
|
d_gnss_synchro->Acq_delay_samples = 0.0;
|
|
d_gnss_synchro->Acq_doppler_hz = 0.0;
|
|
d_gnss_synchro->Acq_samplestamp_samples = 0;
|
|
d_mag = 0.0;
|
|
d_input_power = 0.0;
|
|
d_test_statistics = 0.0;
|
|
d_active = true;
|
|
}
|
|
else if (d_state == 0)
|
|
{
|
|
}
|
|
else
|
|
{
|
|
LOG(ERROR) << "State can only be set to 0 or 1";
|
|
}
|
|
}
|
|
|
|
|
|
void pcps_acquisition::send_positive_acquisition()
|
|
{
|
|
// 6.1- Declare positive acquisition using a message port
|
|
//0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL
|
|
DLOG(INFO) << "positive acquisition"
|
|
<< ", satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN
|
|
<< ", sample_stamp " << d_sample_counter
|
|
<< ", test statistics value " << d_test_statistics
|
|
<< ", test statistics threshold " << d_threshold
|
|
<< ", code phase " << d_gnss_synchro->Acq_delay_samples
|
|
<< ", doppler " << d_gnss_synchro->Acq_doppler_hz
|
|
<< ", magnitude " << d_mag
|
|
<< ", input signal power " << d_input_power;
|
|
d_positive_acq = 1;
|
|
this->message_port_pub(pmt::mp("events"), pmt::from_long(1));
|
|
}
|
|
|
|
|
|
void pcps_acquisition::send_negative_acquisition()
|
|
{
|
|
// 6.2- Declare negative acquisition using a message port
|
|
//0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL
|
|
DLOG(INFO) << "negative acquisition"
|
|
<< ", satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN
|
|
<< ", sample_stamp " << d_sample_counter
|
|
<< ", test statistics value " << d_test_statistics
|
|
<< ", test statistics threshold " << d_threshold
|
|
<< ", code phase " << d_gnss_synchro->Acq_delay_samples
|
|
<< ", doppler " << d_gnss_synchro->Acq_doppler_hz
|
|
<< ", magnitude " << d_mag
|
|
<< ", input signal power " << d_input_power;
|
|
d_positive_acq = 0;
|
|
this->message_port_pub(pmt::mp("events"), pmt::from_long(2));
|
|
}
|
|
|
|
|
|
void pcps_acquisition::dump_results(int effective_fft_size)
|
|
{
|
|
d_dump_number++;
|
|
std::string filename = acq_parameters.dump_filename;
|
|
filename.append("_");
|
|
filename.append(1, d_gnss_synchro->System);
|
|
filename.append("_");
|
|
filename.append(1, d_gnss_synchro->Signal[0]);
|
|
filename.append(1, d_gnss_synchro->Signal[1]);
|
|
filename.append("_ch_");
|
|
filename.append(std::to_string(d_channel));
|
|
filename.append("_");
|
|
filename.append(std::to_string(d_dump_number));
|
|
filename.append("_sat_");
|
|
filename.append(std::to_string(d_gnss_synchro->PRN));
|
|
filename.append(".mat");
|
|
|
|
mat_t* matfp = Mat_CreateVer(filename.c_str(), NULL, MAT_FT_MAT73);
|
|
if (matfp == NULL)
|
|
{
|
|
std::cout << "Unable to create or open Acquisition dump file" << std::endl;
|
|
acq_parameters.dump = false;
|
|
}
|
|
else
|
|
{
|
|
size_t dims[2] = {static_cast<size_t>(effective_fft_size), static_cast<size_t>(d_num_doppler_bins)};
|
|
matvar_t* matvar = Mat_VarCreate("acq_grid", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, grid_.memptr(), 0);
|
|
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
|
Mat_VarFree(matvar);
|
|
|
|
dims[0] = static_cast<size_t>(1);
|
|
dims[1] = static_cast<size_t>(1);
|
|
matvar = Mat_VarCreate("doppler_max", MAT_C_UINT32, MAT_T_UINT32, 1, dims, &acq_parameters.doppler_max, 0);
|
|
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
|
Mat_VarFree(matvar);
|
|
|
|
matvar = Mat_VarCreate("doppler_step", MAT_C_UINT32, MAT_T_UINT32, 1, dims, &d_doppler_step, 0);
|
|
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
|
Mat_VarFree(matvar);
|
|
|
|
matvar = Mat_VarCreate("d_positive_acq", MAT_C_INT32, MAT_T_INT32, 1, dims, &d_positive_acq, 0);
|
|
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
|
Mat_VarFree(matvar);
|
|
|
|
float aux = static_cast<float>(d_gnss_synchro->Acq_doppler_hz);
|
|
matvar = Mat_VarCreate("acq_doppler_hz", MAT_C_SINGLE, MAT_T_SINGLE, 1, dims, &aux, 0);
|
|
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
|
Mat_VarFree(matvar);
|
|
|
|
aux = static_cast<float>(d_gnss_synchro->Acq_delay_samples);
|
|
matvar = Mat_VarCreate("acq_delay_samples", MAT_C_SINGLE, MAT_T_SINGLE, 1, dims, &aux, 0);
|
|
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
|
Mat_VarFree(matvar);
|
|
|
|
matvar = Mat_VarCreate("test_statistic", MAT_C_SINGLE, MAT_T_SINGLE, 1, dims, &d_test_statistics, 0);
|
|
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
|
Mat_VarFree(matvar);
|
|
|
|
matvar = Mat_VarCreate("threshold", MAT_C_SINGLE, MAT_T_SINGLE, 1, dims, &d_threshold, 0);
|
|
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
|
Mat_VarFree(matvar);
|
|
|
|
matvar = Mat_VarCreate("input_power", MAT_C_SINGLE, MAT_T_SINGLE, 1, dims, &d_input_power, 0);
|
|
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
|
Mat_VarFree(matvar);
|
|
|
|
matvar = Mat_VarCreate("sample_counter", MAT_C_UINT64, MAT_T_UINT64, 1, dims, &d_sample_counter, 0);
|
|
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
|
Mat_VarFree(matvar);
|
|
|
|
matvar = Mat_VarCreate("PRN", MAT_C_UINT32, MAT_T_UINT32, 1, dims, &d_gnss_synchro->PRN, 0);
|
|
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
|
Mat_VarFree(matvar);
|
|
|
|
Mat_Close(matfp);
|
|
}
|
|
}
|
|
|
|
|
|
float pcps_acquisition::max_to_input_power_statistic(uint32_t& indext, int& doppler, float input_power)
|
|
{
|
|
float grid_maximum = 0.0;
|
|
unsigned int index_doppler = 0;
|
|
uint32_t tmp_intex_t = 0;
|
|
uint32_t index_time = 0;
|
|
float fft_normalization_factor = static_cast<float>(d_fft_size) * static_cast<float>(d_fft_size);
|
|
|
|
// Find the correlation peak and the carrier frequency
|
|
for (unsigned int i = 0; i < d_num_doppler_bins; i++)
|
|
{
|
|
volk_gnsssdr_32f_index_max_32u(&tmp_intex_t, d_magnitude_grid[i], d_fft_size);
|
|
if (d_magnitude_grid[i][tmp_intex_t] > grid_maximum)
|
|
{
|
|
grid_maximum = d_magnitude_grid[i][tmp_intex_t];
|
|
index_doppler = i;
|
|
index_time = tmp_intex_t;
|
|
}
|
|
}
|
|
indext = index_time;
|
|
doppler = -static_cast<int>(acq_parameters.doppler_max) + d_doppler_step * static_cast<int>(index_doppler);
|
|
|
|
float magt = grid_maximum / (fft_normalization_factor * fft_normalization_factor);
|
|
return magt / input_power;
|
|
}
|
|
|
|
|
|
float pcps_acquisition::first_vs_second_peak_statistic(uint32_t& indext, int& doppler)
|
|
{
|
|
// Look for correlation peaks in the results
|
|
// Find the highest peak and compare it to the second highest peak
|
|
// The second peak is chosen not closer than 1 chip to the highest peak
|
|
|
|
float firstPeak = 0.0;
|
|
unsigned int index_doppler = 0;
|
|
uint32_t tmp_intex_t = 0;
|
|
uint32_t index_time = 0;
|
|
|
|
// Find the correlation peak and the carrier frequency
|
|
for (unsigned int i = 0; i < d_num_doppler_bins; i++)
|
|
{
|
|
volk_gnsssdr_32f_index_max_32u(&tmp_intex_t, d_magnitude_grid[i], d_fft_size);
|
|
if (d_magnitude_grid[i][tmp_intex_t] > firstPeak)
|
|
{
|
|
firstPeak = d_magnitude_grid[i][tmp_intex_t];
|
|
index_doppler = i;
|
|
index_time = tmp_intex_t;
|
|
}
|
|
}
|
|
indext = index_time;
|
|
doppler = -static_cast<int>(acq_parameters.doppler_max) + d_doppler_step * static_cast<int>(index_doppler);
|
|
|
|
// Find 1 chip wide code phase exclude range around the peak
|
|
int32_t excludeRangeIndex1 = index_time - d_samplesPerChip;
|
|
int32_t excludeRangeIndex2 = index_time + d_samplesPerChip;
|
|
|
|
// Correct code phase exclude range if the range includes array boundaries
|
|
if (excludeRangeIndex1 < 0)
|
|
{
|
|
excludeRangeIndex1 = d_fft_size + excludeRangeIndex1;
|
|
}
|
|
else if (excludeRangeIndex2 >= static_cast<int>(d_fft_size))
|
|
{
|
|
excludeRangeIndex2 = excludeRangeIndex2 - d_fft_size;
|
|
}
|
|
|
|
int32_t idx = excludeRangeIndex1;
|
|
memcpy(d_tmp_buffer, d_magnitude_grid[index_doppler], d_fft_size);
|
|
do
|
|
{
|
|
d_tmp_buffer[idx] = 0.0;
|
|
idx++;
|
|
if (idx == static_cast<int>(d_fft_size)) idx = 0;
|
|
}
|
|
while (idx != excludeRangeIndex2);
|
|
|
|
// Find the second highest correlation peak in the same freq. bin ---
|
|
volk_gnsssdr_32f_index_max_32u(&tmp_intex_t, d_tmp_buffer, d_fft_size);
|
|
float secondPeak = d_tmp_buffer[tmp_intex_t];
|
|
|
|
// Compute the test statistics and compare to the threshold
|
|
return firstPeak / secondPeak;
|
|
}
|
|
|
|
|
|
void pcps_acquisition::acquisition_core(unsigned long int samp_count)
|
|
{
|
|
gr::thread::scoped_lock lk(d_setlock);
|
|
|
|
// initialize acquisition algorithm
|
|
float magt = 0.0;
|
|
int doppler = 0;
|
|
uint32_t indext = 0;
|
|
int effective_fft_size = (acq_parameters.bit_transition_flag ? d_fft_size / 2 : d_fft_size);
|
|
if (d_cshort)
|
|
{
|
|
volk_gnsssdr_16ic_convert_32fc(d_data_buffer, d_data_buffer_sc, d_consumed_samples);
|
|
}
|
|
memcpy(d_input_signal, d_data_buffer, d_consumed_samples * sizeof(gr_complex));
|
|
if (d_fft_size > d_consumed_samples)
|
|
{
|
|
for (unsigned int i = d_consumed_samples; i < d_fft_size; i++)
|
|
{
|
|
d_input_signal[i] = gr_complex(0.0, 0.0);
|
|
}
|
|
}
|
|
const gr_complex* in = d_input_signal; // Get the input samples pointer
|
|
float fft_normalization_factor = static_cast<float>(d_fft_size) * static_cast<float>(d_fft_size);
|
|
|
|
d_input_power = 0.0;
|
|
d_mag = 0.0;
|
|
d_num_noncoherent_integrations_counter++;
|
|
|
|
DLOG(INFO) << "Channel: " << d_channel
|
|
<< " , doing acquisition of satellite: " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN
|
|
<< " ,sample stamp: " << samp_count << ", threshold: "
|
|
<< d_threshold << ", doppler_max: " << acq_parameters.doppler_max
|
|
<< ", doppler_step: " << d_doppler_step
|
|
<< ", use_CFAR_algorithm_flag: " << (d_use_CFAR_algorithm_flag ? "true" : "false");
|
|
|
|
lk.unlock();
|
|
|
|
if (d_use_CFAR_algorithm_flag or acq_parameters.bit_transition_flag)
|
|
{
|
|
// Compute the input signal power estimation
|
|
volk_32fc_magnitude_squared_32f(d_tmp_buffer, in, d_fft_size);
|
|
volk_32f_accumulator_s32f(&d_input_power, d_tmp_buffer, d_fft_size);
|
|
d_input_power /= static_cast<float>(d_fft_size);
|
|
}
|
|
|
|
// Doppler frequency grid loop
|
|
if (!d_step_two)
|
|
{
|
|
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
|
|
{
|
|
// Remove Doppler
|
|
volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), in, d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
|
|
|
|
// Perform the FFT-based convolution (parallel time search)
|
|
// Compute the FFT of the carrier wiped--off incoming signal
|
|
d_fft_if->execute();
|
|
|
|
// Multiply carrier wiped--off, Fourier transformed incoming signal with the local FFT'd code reference
|
|
volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(), d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
|
|
|
|
// Compute the inverse FFT
|
|
d_ifft->execute();
|
|
|
|
// Compute squared magnitude (and accumulate in case of non-coherent integration)
|
|
size_t offset = (acq_parameters.bit_transition_flag ? effective_fft_size : 0);
|
|
if (d_num_noncoherent_integrations_counter == 1)
|
|
{
|
|
volk_32fc_magnitude_squared_32f(d_magnitude_grid[doppler_index], d_ifft->get_outbuf() + offset, effective_fft_size);
|
|
}
|
|
else
|
|
{
|
|
volk_32fc_magnitude_squared_32f(d_tmp_buffer, d_ifft->get_outbuf() + offset, effective_fft_size);
|
|
volk_32f_x2_add_32f(d_magnitude_grid[doppler_index], d_magnitude_grid[doppler_index], d_tmp_buffer, effective_fft_size);
|
|
}
|
|
// Record results to file if required
|
|
if (acq_parameters.dump and d_channel == d_dump_channel)
|
|
{
|
|
memcpy(grid_.colptr(doppler_index), d_magnitude_grid[doppler_index], sizeof(float) * effective_fft_size);
|
|
}
|
|
}
|
|
|
|
// Compute the test statistic
|
|
if (d_use_CFAR_algorithm_flag)
|
|
{
|
|
d_test_statistics = max_to_input_power_statistic(indext, doppler, d_input_power);
|
|
}
|
|
else
|
|
{
|
|
d_test_statistics = first_vs_second_peak_statistic(indext, doppler);
|
|
}
|
|
d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % acq_parameters.samples_per_code);
|
|
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
|
|
d_gnss_synchro->Acq_samplestamp_samples = samp_count;
|
|
}
|
|
else
|
|
{
|
|
for (unsigned int doppler_index = 0; doppler_index < acq_parameters.num_doppler_bins_step2; doppler_index++)
|
|
{
|
|
// doppler search steps
|
|
float doppler = d_doppler_center_step_two + (static_cast<float>(doppler_index) - static_cast<float>(acq_parameters.num_doppler_bins_step2) / 2.0) * acq_parameters.doppler_step2;
|
|
|
|
volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), in, d_grid_doppler_wipeoffs_step_two[doppler_index], d_fft_size);
|
|
|
|
// 3- Perform the FFT-based convolution (parallel time search)
|
|
// Compute the FFT of the carrier wiped--off incoming signal
|
|
d_fft_if->execute();
|
|
|
|
// Multiply carrier wiped--off, Fourier transformed incoming signal
|
|
// with the local FFT'd code reference using SIMD operations with VOLK library
|
|
volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(), d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
|
|
|
|
// compute the inverse FFT
|
|
d_ifft->execute();
|
|
|
|
// Search maximum
|
|
size_t offset = (acq_parameters.bit_transition_flag ? effective_fft_size : 0);
|
|
volk_32fc_magnitude_squared_32f(d_magnitude, d_ifft->get_outbuf() + offset, effective_fft_size);
|
|
volk_gnsssdr_32f_index_max_32u(&indext, d_magnitude, effective_fft_size);
|
|
magt = d_magnitude[indext];
|
|
|
|
if (d_use_CFAR_algorithm_flag)
|
|
{
|
|
// Normalize the maximum value to correct the scale factor introduced by FFTW
|
|
magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor);
|
|
}
|
|
// 4- record the maximum peak and the associated synchronization parameters
|
|
if (d_mag < magt)
|
|
{
|
|
d_mag = magt;
|
|
|
|
if (!d_use_CFAR_algorithm_flag)
|
|
{
|
|
// Search grid noise floor approximation for this doppler line
|
|
volk_32f_accumulator_s32f(&d_input_power, d_magnitude, effective_fft_size);
|
|
d_input_power = (d_input_power - d_mag) / (effective_fft_size - 1);
|
|
}
|
|
|
|
// In case that acq_parameters.bit_transition_flag = true, we compare the potentially
|
|
// new maximum test statistics (d_mag/d_input_power) with the value in
|
|
// d_test_statistics. When the second dwell is being processed, the value
|
|
// of d_mag/d_input_power could be lower than d_test_statistics (i.e,
|
|
// the maximum test statistics in the previous dwell is greater than
|
|
// current d_mag/d_input_power). Note that d_test_statistics is not
|
|
// restarted between consecutive dwells in multidwell operation.
|
|
|
|
if (d_test_statistics < (d_mag / d_input_power) or !acq_parameters.bit_transition_flag)
|
|
{
|
|
d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % acq_parameters.samples_per_code);
|
|
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
|
|
d_gnss_synchro->Acq_samplestamp_samples = samp_count;
|
|
|
|
// 5- Compute the test statistics and compare to the threshold
|
|
//d_test_statistics = 2 * d_fft_size * d_mag / d_input_power;
|
|
d_test_statistics = d_mag / d_input_power;
|
|
}
|
|
}
|
|
// Record results to file if required
|
|
if (acq_parameters.dump and d_channel == d_dump_channel)
|
|
{
|
|
memcpy(grid_.colptr(doppler_index), d_magnitude, sizeof(float) * effective_fft_size);
|
|
}
|
|
}
|
|
}
|
|
|
|
lk.lock();
|
|
if (!acq_parameters.bit_transition_flag)
|
|
{
|
|
if (d_test_statistics > d_threshold)
|
|
{
|
|
d_active = false;
|
|
if (acq_parameters.make_2_steps)
|
|
{
|
|
if (d_step_two)
|
|
{
|
|
send_positive_acquisition();
|
|
d_step_two = false;
|
|
d_state = 0; // Positive acquisition
|
|
}
|
|
else
|
|
{
|
|
d_step_two = true; // Clear input buffer and make small grid acquisition
|
|
d_state = 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
send_positive_acquisition();
|
|
d_state = 0; // Positive acquisition
|
|
}
|
|
}
|
|
|
|
if (d_num_noncoherent_integrations_counter == acq_parameters.max_dwells)
|
|
{
|
|
if (d_state != 0) send_negative_acquisition();
|
|
d_state = 0;
|
|
d_active = false;
|
|
d_step_two = false;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
d_active = false;
|
|
if (d_test_statistics > d_threshold)
|
|
{
|
|
if (acq_parameters.make_2_steps)
|
|
{
|
|
if (d_step_two)
|
|
{
|
|
send_positive_acquisition();
|
|
d_step_two = false;
|
|
d_state = 0; // Positive acquisition
|
|
}
|
|
else
|
|
{
|
|
d_step_two = true; // Clear input buffer and make small grid acquisition
|
|
d_state = 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
send_positive_acquisition();
|
|
d_state = 0; // Positive acquisition
|
|
}
|
|
}
|
|
else
|
|
{
|
|
d_state = 0; // Negative acquisition
|
|
d_step_two = false;
|
|
send_negative_acquisition();
|
|
}
|
|
}
|
|
d_worker_active = false;
|
|
|
|
if ((d_num_noncoherent_integrations_counter == acq_parameters.max_dwells) or (d_positive_acq == 1))
|
|
{
|
|
// Record results to file if required
|
|
if (acq_parameters.dump and d_channel == d_dump_channel)
|
|
{
|
|
pcps_acquisition::dump_results(effective_fft_size);
|
|
}
|
|
d_num_noncoherent_integrations_counter = 0;
|
|
d_positive_acq = 0;
|
|
}
|
|
}
|
|
|
|
|
|
int pcps_acquisition::general_work(int noutput_items __attribute__((unused)),
|
|
gr_vector_int& ninput_items, gr_vector_const_void_star& input_items,
|
|
gr_vector_void_star& output_items __attribute__((unused)))
|
|
{
|
|
/*
|
|
* By J.Arribas, L.Esteve and M.Molina
|
|
* Acquisition strategy (Kay Borre book + CFAR threshold):
|
|
* 1. Compute the input signal power estimation
|
|
* 2. Doppler serial search loop
|
|
* 3. Perform the FFT-based circular convolution (parallel time search)
|
|
* 4. Record the maximum peak and the associated synchronization parameters
|
|
* 5. Compute the test statistics and compare to the threshold
|
|
* 6. Declare positive or negative acquisition using a message port
|
|
*/
|
|
|
|
gr::thread::scoped_lock lk(d_setlock);
|
|
if (!d_active or d_worker_active)
|
|
{
|
|
if (!acq_parameters.blocking_on_standby)
|
|
{
|
|
d_sample_counter += d_consumed_samples * ninput_items[0];
|
|
consume_each(ninput_items[0]);
|
|
}
|
|
if (d_step_two)
|
|
{
|
|
d_doppler_center_step_two = static_cast<float>(d_gnss_synchro->Acq_doppler_hz);
|
|
update_grid_doppler_wipeoffs_step2();
|
|
d_state = 0;
|
|
d_active = true;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
switch (d_state)
|
|
{
|
|
case 0:
|
|
{
|
|
//restart acquisition variables
|
|
d_gnss_synchro->Acq_delay_samples = 0.0;
|
|
d_gnss_synchro->Acq_doppler_hz = 0.0;
|
|
d_gnss_synchro->Acq_samplestamp_samples = 0;
|
|
d_mag = 0.0;
|
|
d_input_power = 0.0;
|
|
d_test_statistics = 0.0;
|
|
d_state = 1;
|
|
if (!acq_parameters.blocking_on_standby)
|
|
{
|
|
d_sample_counter += d_consumed_samples * ninput_items[0]; // sample counter
|
|
consume_each(ninput_items[0]);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case 1:
|
|
{
|
|
// Copy the data to the core and let it know that new data is available
|
|
if (d_cshort)
|
|
{
|
|
memcpy(d_data_buffer_sc, input_items[0], d_consumed_samples * sizeof(lv_16sc_t));
|
|
}
|
|
else
|
|
{
|
|
memcpy(d_data_buffer, input_items[0], d_consumed_samples * sizeof(gr_complex));
|
|
}
|
|
if (acq_parameters.blocking)
|
|
{
|
|
lk.unlock();
|
|
acquisition_core(d_sample_counter);
|
|
}
|
|
else
|
|
{
|
|
gr::thread::thread d_worker(&pcps_acquisition::acquisition_core, this, d_sample_counter);
|
|
d_worker_active = true;
|
|
}
|
|
d_sample_counter += d_consumed_samples;
|
|
consume_each(1);
|
|
break;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|