1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-10-30 06:36:21 +00:00
gnss-sdr/utils/matlab/libs/geoFunctions/geo2cart.m

51 lines
1.5 KiB
Matlab

function [X, Y, Z] = geo2cart(phi, lambda, h, i)
% GEO2CART Conversion of geographical coordinates (phi, lambda, h) to
% Cartesian coordinates (X, Y, Z).
%
% [X, Y, Z] = geo2cart(phi, lambda, h, i);
%
% Format for phi and lambda: [degrees minutes seconds].
% h, X, Y, and Z are in meters.
%
% Choices i of Reference Ellipsoid
% 1. International Ellipsoid 1924
% 2. International Ellipsoid 1967
% 3. World Geodetic System 1972
% 4. Geodetic Reference System 1980
% 5. World Geodetic System 1984
%
% Inputs:
% phi - geocentric latitude (format [degrees minutes seconds])
% lambda - geocentric longitude (format [degrees minutes seconds])
% h - height
% i - reference ellipsoid type
%
% Outputs:
% X, Y, Z - Cartesian coordinates (meters)
% GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
% This file is part of GNSS-SDR.
%
% SPDX-FileCopyrightText: Kai Borre, 1998
% SPDX-License-Identifier: GPL-3.0-or-later
%==========================================================================
b = phi(1) + phi(2)/60 + phi(3)/3600;
b = b*pi / 180;
l = lambda(1) + lambda(2)/60 + lambda(3)/3600;
l = l*pi / 180;
a = [6378388 6378160 6378135 6378137 6378137];
f = [1/297 1/298.247 1/298.26 1/298.257222101 1/298.257223563];
ex2 = (2-f(i))*f(i) / ((1-f(i))^2);
c = a(i) * sqrt(1+ex2);
N = c / sqrt(1 + ex2*cos(b)^2);
X = (N+h) * cos(b) * cos(l);
Y = (N+h) * cos(b) * sin(l);
Z = ((1-f(i))^2*N + h) * sin(b);
%%%%%%%%%%%%%% end geo2cart.m %%%%%%%%%%%%%%%%%%%%%%%%