1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-10-30 06:36:21 +00:00
gnss-sdr/utils/matlab/libs/geoFunctions/cart2geo.m

61 lines
1.9 KiB
Matlab

function [phi, lambda, h] = cart2geo(X, Y, Z, i)
% CART2GEO Conversion of Cartesian coordinates (X,Y,Z) to geographical
% coordinates (phi, lambda, h) on a selected reference ellipsoid.
%
% [phi, lambda, h] = cart2geo(X, Y, Z, i);
%
% Choices i of Reference Ellipsoid for Geographical Coordinates
% 1. International Ellipsoid 1924
% 2. International Ellipsoid 1967
% 3. World Geodetic System 1972
% 4. Geodetic Reference System 1980
% 5. World Geodetic System 1984
% GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
% This file is part of GNSS-SDR.
%
% SPDX-FileCopyrightText: Kai Borre
% SPDX-License-Identifier: GPL-3.0-or-later
%==========================================================================
a = [6378388 6378160 6378135 6378137 6378137];
f = [1/297 1/298.247 1/298.26 1/298.257222101 1/298.257223563];
lambda = atan2(Y,X);
ex2 = (2-f(i))*f(i)/((1-f(i))^2);
c = a(i)*sqrt(1+ex2);
phi = atan(Z/((sqrt(X^2+Y^2)*(1-(2-f(i)))*f(i))));
h = 0.1; oldh = 0;
iterations = 0;
while abs(h-oldh) > 1.e-12
oldh = h;
N = c/sqrt(1+ex2*cos(phi)^2);
phi = atan(Z/((sqrt(X^2+Y^2)*(1-(2-f(i))*f(i)*N/(N+h)))));
h = sqrt(X^2+Y^2)/cos(phi)-N;
iterations = iterations + 1;
if iterations > 100
fprintf('Failed to approximate h with desired precision. h-oldh: %e.\n', h-oldh);
break;
end
end
phi = phi*180/pi;
% b = zeros(1,3);
% b(1,1) = fix(phi);
% b(2,1) = fix(rem(phi,b(1,1))*60);
% b(3,1) = (phi-b(1,1)-b(1,2)/60)*3600;
lambda = lambda*180/pi;
% l = zeros(1,3);
% l(1,1) = fix(lambda);
% l(2,1) = fix(rem(lambda,l(1,1))*60);
% l(3,1) = (lambda-l(1,1)-l(1,2)/60)*3600;
%fprintf('\n phi =%3.0f %3.0f %8.5f',b(1),b(2),b(3))
%fprintf('\n lambda =%3.0f %3.0f %8.5f',l(1),l(2),l(3))
%fprintf('\n h =%14.3f\n',h)
%%%%%%%%%%%%%% end cart2geo.m %%%%%%%%%%%%%%%%%%%