gnss-sdr/src/algorithms/telemetry_decoder/gnuradio_blocks/gps_l1_ca_telemetry_decoder...

389 lines
16 KiB
C++

/*!
* \file gps_l1_ca_telemetry_decoder_cc.cc
* \brief Implementation of a NAV message demodulator block based on
* Kay Borre book MATLAB-based GPS receiver
* \author Javier Arribas, 2011. jarribas(at)cttc.es
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2014 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
/*!
* \todo Clean this code and move the telemetry definitions to GPS_L1_CA system definitions file
*/
#include "gps_l1_ca_telemetry_decoder_cc.h"
#include <iostream>
#include <sstream>
#include <boost/lexical_cast.hpp>
#include <gnuradio/io_signature.h>
#include <glog/log_severity.h>
#include <glog/logging.h>
#include "control_message_factory.h"
#include "gnss_synchro.h"
#ifndef _rotl
#define _rotl(X,N) ((X << N) ^ (X >> (32-N))) // Used in the parity check algorithm
#endif
using google::LogMessage;
/*!
* \todo name and move the magic numbers to GPS_L1_CA.h
*/
gps_l1_ca_telemetry_decoder_cc_sptr
gps_l1_ca_make_telemetry_decoder_cc(Gnss_Satellite satellite, long if_freq, long fs_in, unsigned
int vector_length, boost::shared_ptr<gr::msg_queue> queue, bool dump)
{
return gps_l1_ca_telemetry_decoder_cc_sptr(new gps_l1_ca_telemetry_decoder_cc(satellite, if_freq,
fs_in, vector_length, queue, dump));
}
void gps_l1_ca_telemetry_decoder_cc::forecast (int noutput_items, gr_vector_int &ninput_items_required)
{
for (unsigned i = 0; i < 3; i++)
{
ninput_items_required[i] = d_samples_per_bit * 8; //set the required sample history
}
}
gps_l1_ca_telemetry_decoder_cc::gps_l1_ca_telemetry_decoder_cc(
Gnss_Satellite satellite,
long if_freq,
long fs_in,
unsigned
int vector_length,
boost::shared_ptr<gr::msg_queue> queue,
bool dump) :
gr::block("gps_navigation_cc", gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)),
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
{
// initialize internal vars
d_queue = queue;
d_dump = dump;
d_satellite = Gnss_Satellite(satellite.get_system(), satellite.get_PRN());
DLOG(INFO) << "TELEMETRY PROCESSING: satellite " << d_satellite;
d_vector_length = vector_length;
d_samples_per_bit = ( GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS ) / GPS_CA_TELEMETRY_RATE_BITS_SECOND;
d_fs_in = fs_in;
//d_preamble_duration_seconds = (1.0 / GPS_CA_TELEMETRY_RATE_BITS_SECOND) * GPS_CA_PREAMBLE_LENGTH_BITS;
//std::cout<<"d_preamble_duration_seconds="<<d_preamble_duration_seconds<<"\r\n";
// set the preamble
unsigned short int preambles_bits[GPS_CA_PREAMBLE_LENGTH_BITS] = GPS_PREAMBLE;
memcpy((unsigned short int*)this->d_preambles_bits, (unsigned short int*)preambles_bits, GPS_CA_PREAMBLE_LENGTH_BITS*sizeof(unsigned short int));
// preamble bits to sampled symbols
d_preambles_symbols = (signed int*)malloc(sizeof(signed int) * GPS_CA_PREAMBLE_LENGTH_BITS * d_samples_per_bit);
int n = 0;
for (int i = 0; i < GPS_CA_PREAMBLE_LENGTH_BITS; i++)
{
for (unsigned int j = 0; j < d_samples_per_bit; j++)
{
if (d_preambles_bits[i] == 1)
{
d_preambles_symbols[n] = 1;
}
else
{
d_preambles_symbols[n] = -1;
}
n++;
}
}
d_sample_counter = 0;
//d_preamble_code_phase_seconds = 0;
d_stat = 0;
d_preamble_index = 0;
d_symbol_accumulator = 0;
d_symbol_accumulator_counter = 0;
d_frame_bit_index = 0;
d_preamble_time_seconds = 0;
d_flag_frame_sync = false;
d_GPS_frame_4bytes = 0;
d_prev_GPS_frame_4bytes = 0;
d_flag_parity = false;
d_TOW_at_Preamble = 0;
d_TOW_at_current_symbol = 0;
flag_TOW_set = false;
//set_history(d_samples_per_bit*8); // At least a history of 8 bits are needed to correlate with the preamble
}
gps_l1_ca_telemetry_decoder_cc::~gps_l1_ca_telemetry_decoder_cc()
{
delete d_preambles_symbols;
d_dump_file.close();
}
bool gps_l1_ca_telemetry_decoder_cc::gps_word_parityCheck(unsigned int gpsword)
{
unsigned int d1, d2, d3, d4, d5, d6, d7, t, parity;
/* XOR as many bits in parallel as possible. The magic constants pick
up bits which are to be XOR'ed together to implement the GPS parity
check algorithm described in IS-GPS-200E. This avoids lengthy shift-
and-xor loops. */
d1 = gpsword & 0xFBFFBF00;
d2 = _rotl(gpsword,1) & 0x07FFBF01;
d3 = _rotl(gpsword,2) & 0xFC0F8100;
d4 = _rotl(gpsword,3) & 0xF81FFE02;
d5 = _rotl(gpsword,4) & 0xFC00000E;
d6 = _rotl(gpsword,5) & 0x07F00001;
d7 = _rotl(gpsword,6) & 0x00003000;
t = d1 ^ d2 ^ d3 ^ d4 ^ d5 ^ d6 ^ d7;
// Now XOR the 5 6-bit fields together to produce the 6-bit final result.
parity = t ^ _rotl(t,6) ^ _rotl(t,12) ^ _rotl(t,18) ^ _rotl(t,24);
parity = parity & 0x3F;
if (parity == (gpsword & 0x3F)) return(true);
else return(false);
}
int gps_l1_ca_telemetry_decoder_cc::general_work (int noutput_items, gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
int corr_value = 0;
int preamble_diff = 0;
Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0];
d_sample_counter++; //count for the processed samples
// ########### Output the tracking data to navigation and PVT ##########
const Gnss_Synchro **in = (const Gnss_Synchro **) &input_items[0]; //Get the input samples pointer
// TODO Optimize me!
//******* preamble correlation ********
for (unsigned int i = 0; i < d_samples_per_bit*8; i++)
{
if (in[0][i].Prompt_I < 0) // symbols clipping
{
corr_value -= d_preambles_symbols[i];
}
else
{
corr_value += d_preambles_symbols[i];
}
}
d_flag_preamble = false;
//******* frame sync ******************
if (abs(corr_value) >= 160)
{
//TODO: Rewrite with state machine
if (d_stat == 0)
{
d_GPS_FSM.Event_gps_word_preamble();
d_preamble_index = d_sample_counter;//record the preamble sample stamp
std::cout << "Preamble detection for SAT " << this->d_satellite << std::endl;
d_symbol_accumulator = 0; //sync the symbol to bits integrator
d_symbol_accumulator_counter = 0;
d_frame_bit_index = 8;
d_stat = 1; // enter into frame pre-detection status
}
else if (d_stat == 1) //check 6 seconds of preamble separation
{
preamble_diff = abs(d_sample_counter - d_preamble_index);
if (abs(preamble_diff - 6000) < 1)
{
d_GPS_FSM.Event_gps_word_preamble();
d_flag_preamble = true;
d_preamble_index = d_sample_counter; //record the preamble sample stamp (t_P)
d_preamble_time_seconds = in[0][0].Tracking_timestamp_secs;// - d_preamble_duration_seconds; //record the PRN start sample index associated to the preamble
if (!d_flag_frame_sync)
{
d_flag_frame_sync = true;
std::cout <<" Frame sync SAT " << this->d_satellite << " with preamble start at " << d_preamble_time_seconds << " [s]" << std::endl;
}
}
}
}
else
{
if (d_stat == 1)
{
preamble_diff = d_sample_counter - d_preamble_index;
if (preamble_diff > 6001)
{
std::cout << "Lost of frame sync SAT " << this->d_satellite << " preamble_diff= " << preamble_diff << std::endl;
d_stat = 0; //lost of frame sync
d_flag_frame_sync = false;
flag_TOW_set=false;
}
}
}
//******* SYMBOL TO BIT *******
d_symbol_accumulator += in[0][d_samples_per_bit*8 - 1].Prompt_I; // accumulate the input value in d_symbol_accumulator
d_symbol_accumulator_counter++;
if (d_symbol_accumulator_counter == 20)
{
if (d_symbol_accumulator > 0)
{ //symbol to bit
d_GPS_frame_4bytes += 1; //insert the telemetry bit in LSB
}
d_symbol_accumulator = 0;
d_symbol_accumulator_counter = 0;
//******* bits to words ******
d_frame_bit_index++;
if (d_frame_bit_index == 30)
{
d_frame_bit_index = 0;
// parity check
// Each word in wordbuff is composed of:
// Bits 0 to 29 = the GPS data word
// Bits 30 to 31 = 2 LSBs of the GPS word ahead.
// prepare the extended frame [-2 -1 0 ... 30]
if (d_prev_GPS_frame_4bytes & 0x00000001)
{
d_GPS_frame_4bytes = d_GPS_frame_4bytes | 0x40000000;
}
if (d_prev_GPS_frame_4bytes & 0x00000002)
{
d_GPS_frame_4bytes = d_GPS_frame_4bytes | 0x80000000;
}
/* Check that the 2 most recently logged words pass parity. Have to first
invert the data bits according to bit 30 of the previous word. */
if(d_GPS_frame_4bytes & 0x40000000)
{
d_GPS_frame_4bytes ^= 0x3FFFFFC0; // invert the data bits (using XOR)
}
if (gps_l1_ca_telemetry_decoder_cc::gps_word_parityCheck(d_GPS_frame_4bytes))
{
memcpy(&d_GPS_FSM.d_GPS_frame_4bytes, &d_GPS_frame_4bytes, sizeof(char)*4);
d_GPS_FSM.d_preamble_time_ms = d_preamble_time_seconds*1000.0;
d_GPS_FSM.Event_gps_word_valid();
d_flag_parity = true;
}
else
{
d_GPS_FSM.Event_gps_word_invalid();
d_flag_parity = false;
}
d_prev_GPS_frame_4bytes = d_GPS_frame_4bytes; // save the actual frame
d_GPS_frame_4bytes = d_GPS_frame_4bytes & 0;
}
else
{
d_GPS_frame_4bytes <<= 1; //shift 1 bit left the telemetry word
}
}
// output the frame
consume_each(1); //one by one
Gnss_Synchro current_synchro_data; //structure to save the synchronization information and send the output object to the next block
//1. Copy the current tracking output
current_synchro_data = in[0][0];
//2. Add the telemetry decoder information
if (this->d_flag_preamble == true and d_GPS_FSM.d_nav.d_TOW > 0) //update TOW at the preamble instant (todo: check for valid d_TOW)
{
d_TOW_at_Preamble = d_GPS_FSM.d_nav.d_TOW + GPS_SUBFRAME_SECONDS; //we decoded the current TOW when the last word of the subframe arrive, so, we have a lag of ONE SUBFRAME
d_TOW_at_current_symbol = d_TOW_at_Preamble + GPS_CA_PREAMBLE_LENGTH_BITS/GPS_CA_TELEMETRY_RATE_BITS_SECOND;
Prn_timestamp_at_preamble_ms = in[0][0].Tracking_timestamp_secs * 1000.0;
if (flag_TOW_set == false)
{
flag_TOW_set = true;
}
}
else
{
d_TOW_at_current_symbol = d_TOW_at_current_symbol + GPS_L1_CA_CODE_PERIOD;
}
current_synchro_data.d_TOW = d_TOW_at_Preamble;
current_synchro_data.d_TOW_at_current_symbol = d_TOW_at_current_symbol;
current_synchro_data.Flag_valid_word = (d_flag_frame_sync == true and d_flag_parity == true and flag_TOW_set==true);
current_synchro_data.Flag_preamble = d_flag_preamble;
current_synchro_data.Prn_timestamp_ms = in[0][0].Tracking_timestamp_secs * 1000.0;
current_synchro_data.Prn_timestamp_at_preamble_ms = Prn_timestamp_at_preamble_ms;
if(d_dump == true)
{
// MULTIPLEXED FILE RECORDING - Record results to file
try
{
double tmp_double;
tmp_double = d_TOW_at_current_symbol;
d_dump_file.write((char*)&tmp_double, sizeof(double));
tmp_double = current_synchro_data.Prn_timestamp_ms;
d_dump_file.write((char*)&tmp_double, sizeof(double));
tmp_double = d_TOW_at_Preamble;
d_dump_file.write((char*)&tmp_double, sizeof(double));
}
catch (std::ifstream::failure e)
{
std::cout << "Exception writing observables dump file " << e.what() << std::endl;
}
}
//3. Make the output (copy the object contents to the GNURadio reserved memory)
*out[0] = current_synchro_data;
return 1;
}
void gps_l1_ca_telemetry_decoder_cc::set_satellite(Gnss_Satellite satellite)
{
d_satellite = Gnss_Satellite(satellite.get_system(), satellite.get_PRN());
DLOG(INFO) << "Setting decoder Finite State Machine to satellite " << d_satellite;
d_GPS_FSM.i_satellite_PRN = d_satellite.get_PRN();
DLOG(INFO) << "Navigation Satellite set to " << d_satellite;
}
void gps_l1_ca_telemetry_decoder_cc::set_channel(int channel)
{
d_channel = channel;
d_GPS_FSM.i_channel_ID = channel;
DLOG(INFO) << "Navigation channel set to " << channel;
// ############# ENABLE DATA FILE LOG #################
if (d_dump == true)
{
if (d_dump_file.is_open() == false)
{
try
{
d_dump_filename = "telemetry";
d_dump_filename.append(boost::lexical_cast<std::string>(d_channel));
d_dump_filename.append(".dat");
d_dump_file.exceptions ( std::ifstream::failbit | std::ifstream::badbit );
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
std::cout << "Telemetry decoder dump enabled on channel " << d_channel
<< " Log file: " << d_dump_filename.c_str() << std::endl;
}
catch (std::ifstream::failure e)
{
std::cout << "channel " << d_channel
<< " Exception opening trk dump file " << e.what() << std::endl;
}
}
}
}