gnss-sdr/src/algorithms/telemetry_decoder/gnuradio_blocks/glonass_l2_ca_telemetry_dec...

430 lines
18 KiB
C++

/*!
* \file glonass_l2_ca_telemetry_decoder_gs.cc
* \brief Implementation of a GLONASS L2 C/A NAV data decoder block
* \author Damian Miralles, 2018. dmiralles2009(at)gmail.com
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* SPDX-License-Identifier: GPL-3.0-or-later
*
* -------------------------------------------------------------------------
*/
#include "glonass_l2_ca_telemetry_decoder_gs.h"
#include "display.h"
#include "glonass_gnav_almanac.h"
#include "glonass_gnav_ephemeris.h"
#include "glonass_gnav_utc_model.h"
#include <glog/logging.h>
#include <gnuradio/io_signature.h>
#include <pmt/pmt.h> // for make_any
#include <pmt/pmt_sugar.h> // for mp
#include <cmath> // for floor, round
#include <cstdlib> // for abs
#include <exception> // for exception
#include <iostream> // for cout
#include <memory> // for shared_ptr, make_shared
#define CRC_ERROR_LIMIT 6
glonass_l2_ca_telemetry_decoder_gs_sptr
glonass_l2_ca_make_telemetry_decoder_gs(const Gnss_Satellite &satellite, bool dump)
{
return glonass_l2_ca_telemetry_decoder_gs_sptr(new glonass_l2_ca_telemetry_decoder_gs(satellite, dump));
}
glonass_l2_ca_telemetry_decoder_gs::glonass_l2_ca_telemetry_decoder_gs(
const Gnss_Satellite &satellite,
bool dump) : gr::block("glonass_l2_ca_telemetry_decoder_gs", gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)),
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
{
// prevent telemetry symbols accumulation in output buffers
this->set_max_noutput_items(1);
// Ephemeris data port out
this->message_port_register_out(pmt::mp("telemetry"));
// Control messages to tracking block
this->message_port_register_out(pmt::mp("telemetry_to_trk"));
// initialize internal vars
d_dump = dump;
d_satellite = Gnss_Satellite(satellite.get_system(), satellite.get_PRN());
LOG(INFO) << "Initializing GLONASS L2 CA TELEMETRY DECODING";
// preamble bits to sampled symbols
int32_t n = 0;
for (uint16_t d_preambles_bit : d_preambles_bits)
{
for (uint32_t j = 0; j < GLONASS_GNAV_TELEMETRY_SYMBOLS_PER_PREAMBLE_BIT; j++)
{
if (d_preambles_bit == 1)
{
d_preambles_symbols[n] = 1;
}
else
{
d_preambles_symbols[n] = -1;
}
n++;
}
}
d_symbol_history.set_capacity(GLONASS_GNAV_STRING_SYMBOLS);
d_sample_counter = 0ULL;
d_stat = 0;
d_preamble_index = 0ULL;
d_flag_frame_sync = false;
d_flag_parity = false;
d_TOW_at_current_symbol = 0;
Flag_valid_word = false;
delta_t = 0;
d_CRC_error_counter = 0;
d_flag_preamble = false;
d_channel = 0;
flag_TOW_set = false;
d_preamble_time_samples = 0;
}
glonass_l2_ca_telemetry_decoder_gs::~glonass_l2_ca_telemetry_decoder_gs()
{
if (d_dump_file.is_open() == true)
{
try
{
d_dump_file.close();
}
catch (const std::exception &ex)
{
LOG(WARNING) << "Exception in destructor closing the dump file " << ex.what();
}
}
}
void glonass_l2_ca_telemetry_decoder_gs::decode_string(const double *frame_symbols, int32_t frame_length)
{
double chip_acc = 0.0;
int32_t chip_acc_counter = 0;
// 1. Transform from symbols to bits
std::string bi_binary_code;
std::string relative_code;
std::string data_bits;
// Group samples into bi-binary code
for (int32_t i = 0; i < (frame_length); i++)
{
chip_acc += frame_symbols[i];
chip_acc_counter += 1;
if (chip_acc_counter == (GLONASS_GNAV_TELEMETRY_SYMBOLS_PER_BIT))
{
if (chip_acc > 0)
{
bi_binary_code.push_back('1');
chip_acc_counter = 0;
chip_acc = 0;
}
else
{
bi_binary_code.push_back('0');
chip_acc_counter = 0;
chip_acc = 0;
}
}
}
// Convert from bi-binary code to relative code
for (int32_t i = 0; i < (GLONASS_GNAV_STRING_BITS); i++)
{
if (bi_binary_code[2 * i] == '1' && bi_binary_code[2 * i + 1] == '0')
{
relative_code.push_back('1');
}
else
{
relative_code.push_back('0');
}
}
// Convert from relative code to data bits
data_bits.push_back('0');
for (int32_t i = 1; i < (GLONASS_GNAV_STRING_BITS); i++)
{
data_bits.push_back(((relative_code[i - 1] - '0') ^ (relative_code[i] - '0')) + '0');
}
// 2. Call the GLONASS GNAV string decoder
d_nav.string_decoder(data_bits);
// 3. Check operation executed correctly
if (d_nav.get_flag_CRC_test() == true)
{
LOG(INFO) << "GLONASS GNAV CRC correct in channel " << d_channel << " from satellite " << d_satellite;
}
else
{
LOG(INFO) << "GLONASS GNAV CRC error in channel " << d_channel << " from satellite " << d_satellite;
}
// 4. Push the new navigation data to the queues
if (d_nav.have_new_ephemeris() == true)
{
// get object for this SV (mandatory)
d_nav.set_rf_link(d_satellite.get_rf_link());
std::shared_ptr<Glonass_Gnav_Ephemeris> tmp_obj = std::make_shared<Glonass_Gnav_Ephemeris>(d_nav.get_ephemeris());
this->message_port_pub(pmt::mp("telemetry"), pmt::make_any(tmp_obj));
LOG(INFO) << "GLONASS GNAV Ephemeris have been received in channel" << d_channel << " from satellite " << d_satellite;
std::cout << TEXT_CYAN << "New GLONASS L2 GNAV message received in channel " << d_channel << ": ephemeris from satellite " << d_satellite << TEXT_RESET << std::endl;
}
if (d_nav.have_new_utc_model() == true)
{
// get object for this SV (mandatory)
std::shared_ptr<Glonass_Gnav_Utc_Model> tmp_obj = std::make_shared<Glonass_Gnav_Utc_Model>(d_nav.get_utc_model());
this->message_port_pub(pmt::mp("telemetry"), pmt::make_any(tmp_obj));
LOG(INFO) << "GLONASS GNAV UTC Model have been received in channel" << d_channel << " from satellite " << d_satellite;
std::cout << TEXT_CYAN << "New GLONASS L2 GNAV message received in channel " << d_channel << ": UTC model parameters from satellite " << d_satellite << TEXT_RESET << std::endl;
}
if (d_nav.have_new_almanac() == true)
{
uint32_t slot_nbr = d_nav.get_alm_satellite_slot_number();
std::shared_ptr<Glonass_Gnav_Almanac> tmp_obj = std::make_shared<Glonass_Gnav_Almanac>(d_nav.get_almanac(slot_nbr));
this->message_port_pub(pmt::mp("telemetry"), pmt::make_any(tmp_obj));
LOG(INFO) << "GLONASS GNAV Almanac have been received in channel" << d_channel << " in slot number " << slot_nbr;
std::cout << TEXT_CYAN << "New GLONASS L2 GNAV almanac received in channel " << d_channel << " from satellite " << d_satellite << TEXT_RESET << std::endl;
}
// 5. Update satellite information on system
if (d_nav.get_flag_update_slot_number() == true)
{
LOG(INFO) << "GLONASS GNAV Slot Number Identified in channel " << d_channel;
d_satellite.update_PRN(d_nav.get_ephemeris().d_n);
d_satellite.what_block(d_satellite.get_system(), d_nav.get_ephemeris().d_n);
d_nav.set_flag_update_slot_number(false);
}
}
void glonass_l2_ca_telemetry_decoder_gs::set_satellite(const Gnss_Satellite &satellite)
{
d_satellite = Gnss_Satellite(satellite.get_system(), satellite.get_PRN());
DLOG(INFO) << "Setting decoder Finite State Machine to satellite " << d_satellite;
DLOG(INFO) << "Navigation Satellite set to " << d_satellite;
}
void glonass_l2_ca_telemetry_decoder_gs::set_channel(int32_t channel)
{
d_channel = channel;
LOG(INFO) << "Navigation channel set to " << channel;
// ############# ENABLE DATA FILE LOG #################
if (d_dump == true)
{
if (d_dump_file.is_open() == false)
{
try
{
d_dump_filename = "telemetry";
d_dump_filename.append(std::to_string(d_channel));
d_dump_filename.append(".dat");
d_dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
LOG(INFO) << "Telemetry decoder dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str();
}
catch (const std::ifstream::failure &e)
{
LOG(WARNING) << "channel " << d_channel << ": exception opening Glonass TLM dump file. " << e.what();
}
}
}
}
int glonass_l2_ca_telemetry_decoder_gs::general_work(int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)),
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
int32_t corr_value = 0;
int32_t preamble_diff = 0;
auto **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]); // Get the output buffer pointer
const auto **in = reinterpret_cast<const Gnss_Synchro **>(&input_items[0]); // Get the input buffer pointer
Gnss_Synchro current_symbol{}; // structure to save the synchronization information and send the output object to the next block
// 1. Copy the current tracking output
current_symbol = in[0][0];
d_symbol_history.push_back(current_symbol); // add new symbol to the symbol queue
d_sample_counter++; // count for the processed samples
consume_each(1);
d_flag_preamble = false;
if (static_cast<int32_t>(d_symbol_history.size()) >= d_symbols_per_preamble)
{
// ******* preamble correlation ********
for (int32_t i = 0; i < d_symbols_per_preamble; i++)
{
if (d_symbol_history[i].Prompt_I < 0.0) // symbols clipping
{
corr_value -= d_preambles_symbols[i];
}
else
{
corr_value += d_preambles_symbols[i];
}
}
}
// ******* frame sync ******************
if (d_stat == 0) // no preamble information
{
if (abs(corr_value) >= d_symbols_per_preamble)
{
// Record the preamble sample stamp
d_preamble_index = d_sample_counter;
LOG(INFO) << "Preamble detection for GLONASS L2 C/A SAT " << this->d_satellite;
// Enter into frame pre-detection status
d_stat = 1;
d_preamble_time_samples = d_symbol_history[0].Tracking_sample_counter; // record the preamble sample stamp
}
}
else if (d_stat == 1) // possible preamble lock
{
if (abs(corr_value) >= d_symbols_per_preamble)
{
// check preamble separation
preamble_diff = static_cast<int32_t>(d_sample_counter - d_preamble_index);
// Record the PRN start sample index associated to the preamble
d_preamble_time_samples = static_cast<double>(d_symbol_history[0].Tracking_sample_counter);
if (abs(preamble_diff - GLONASS_GNAV_PREAMBLE_PERIOD_SYMBOLS) == 0)
{
// try to decode frame
LOG(INFO) << "Starting string decoder for GLONASS L2 C/A SAT " << this->d_satellite;
d_preamble_index = d_sample_counter; // record the preamble sample stamp
d_stat = 2;
}
else
{
if (preamble_diff > GLONASS_GNAV_PREAMBLE_PERIOD_SYMBOLS)
{
d_stat = 0; // start again
}
DLOG(INFO) << "Failed string decoder for GLONASS L2 C/A SAT " << this->d_satellite;
}
}
}
else if (d_stat == 2)
{
// FIXME: The preamble index marks the first symbol of the string count. Here I just wait for another full string to be received before processing
if (d_sample_counter == d_preamble_index + static_cast<uint64_t>(GLONASS_GNAV_STRING_SYMBOLS))
{
// NEW GLONASS string received
// 0. fetch the symbols into an array
int32_t string_length = GLONASS_GNAV_STRING_SYMBOLS - d_symbols_per_preamble;
std::array<double, GLONASS_GNAV_DATA_SYMBOLS> string_symbols{};
// ******* SYMBOL TO BIT *******
for (int32_t i = 0; i < string_length; i++)
{
if (corr_value > 0)
{
string_symbols[i] = d_symbol_history[i + d_symbols_per_preamble].Prompt_I; // because last symbol of the preamble is just received now!
}
else
{
string_symbols[i] = -d_symbol_history[i + d_symbols_per_preamble].Prompt_I; // because last symbol of the preamble is just received now!
}
}
// call the decoder
decode_string(string_symbols.data(), string_length);
if (d_nav.get_flag_CRC_test() == true)
{
d_CRC_error_counter = 0;
d_flag_preamble = true; // valid preamble indicator (initialized to false every work())
d_preamble_index = d_sample_counter; // record the preamble sample stamp (t_P)
if (!d_flag_frame_sync)
{
d_flag_frame_sync = true;
DLOG(INFO) << " Frame sync SAT " << this->d_satellite << " with preamble start at "
<< d_symbol_history[0].Tracking_sample_counter << " [samples]";
}
}
else
{
d_CRC_error_counter++;
d_preamble_index = d_sample_counter; // record the preamble sample stamp
if (d_CRC_error_counter > CRC_ERROR_LIMIT)
{
LOG(INFO) << "Lost of frame sync SAT " << this->d_satellite;
d_flag_frame_sync = false;
d_stat = 0;
}
}
}
}
// UPDATE GNSS SYNCHRO DATA
// 2. Add the telemetry decoder information
if (this->d_flag_preamble == true and d_nav.get_flag_TOW_new() == true)
// update TOW at the preamble instant
{
d_TOW_at_current_symbol = floor((d_nav.get_ephemeris().d_TOW - GLONASS_GNAV_PREAMBLE_DURATION_S) * 1000) / 1000;
d_nav.set_flag_TOW_new(false);
}
else // if there is not a new preamble, we define the TOW of the current symbol
{
d_TOW_at_current_symbol = d_TOW_at_current_symbol + GLONASS_L2_CA_CODE_PERIOD_S;
}
// if (d_flag_frame_sync == true and d_nav.flag_TOW_set==true and d_nav.get_flag_CRC_test() == true)
// if(d_nav.flag_GGTO_1 == true and d_nav.flag_GGTO_2 == true and d_nav.flag_GGTO_3 == true and d_nav.flag_GGTO_4 == true) // all GGTO parameters arrived
// {
// delta_t = d_nav.A_0G_10 + d_nav.A_1G_10 * (d_TOW_at_current_symbol - d_nav.t_0G_10 + 604800.0 * (fmod((d_nav.WN_0 - d_nav.WN_0G_10), 64)));
// }
if (d_flag_frame_sync == true and d_nav.is_flag_TOW_set() == true)
{
current_symbol.Flag_valid_word = true;
}
else
{
current_symbol.Flag_valid_word = false;
}
current_symbol.PRN = this->d_satellite.get_PRN();
current_symbol.TOW_at_current_symbol_ms = round(d_TOW_at_current_symbol * 1000.0);
// todo: glonass time to gps time should be done in observables block
// current_symbol.TOW_at_current_symbol_ms -= static_cast<uint32_t>(delta_t) * 1000;
if (d_dump == true)
{
// MULTIPLEXED FILE RECORDING - Record results to file
try
{
double tmp_double;
uint64_t tmp_ulong_int;
tmp_double = d_TOW_at_current_symbol;
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
tmp_ulong_int = current_symbol.Tracking_sample_counter;
d_dump_file.write(reinterpret_cast<char *>(&tmp_ulong_int), sizeof(uint64_t));
tmp_double = 0;
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
}
catch (const std::ifstream::failure &e)
{
LOG(WARNING) << "Exception writing observables dump file " << e.what();
}
}
// 3. Make the output (copy the object contents to the GNURadio reserved memory)
*out[0] = current_symbol;
return 1;
}