1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-01-18 05:03:01 +00:00
gnss-sdr/conf/gnss-sdr_Hybrid_byte_sim.conf
2018-01-29 23:30:50 +01:00

284 lines
12 KiB
Plaintext

; Default configuration file
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
[GNSS-SDR]
;######### GLOBAL OPTIONS ##################
;internal_fs_sps: Internal signal sampling frequency after the signal conditioning stage [samples per second].
;GNSS-SDR.internal_fs_sps=2048000
GNSS-SDR.internal_fs_sps=2600000
;######### SIGNAL_SOURCE CONFIG ############
;#implementation
SignalSource.implementation=File_Signal_Source
;#filename: path to file with the captured GNSS signal samples to be processed
;#SignalSource.filename=/home/javier/Descargas/rtlsdr_tcxo_l1/rtlsdr_tcxo_l1.bin ; <- PUT YOUR FILE HERE
SignalSource.filename=/Users/carlesfernandez/git/cttc/build/signal_out.bin ; <- PUT YOUR FILE HERE
;#item_type: Type and resolution for each of the signal samples.
SignalSource.item_type=byte
;#sampling_frequency: Original Signal sampling frequency in samples per second
SignalSource.sampling_frequency=4000000
;#samples: Number of samples to be processed. Notice that 0 indicates the entire file.
SignalSource.samples=0
;#repeat: Repeat the processing file.
SignalSource.repeat=false
;#dump: Dump the Signal source data to a file.
SignalSource.dump=false
SignalSource.dump_filename=../data/signal_source.dat
;#enable_throttle_control: Enabling this option tells the signal source to keep the delay between samples in post processing.
; it helps to not overload the CPU, but the processing time will be longer.
SignalSource.enable_throttle_control=false
;######### SIGNAL_CONDITIONER CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
SignalConditioner.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER CONFIG ############
;## Changes the type of input data. Please disable it in this version.
;#implementation: [Pass_Through] disables this block
DataTypeAdapter.implementation=Ibyte_To_Complex
DataTypeAdapter.dump=false
;#dump_filename: Log path and filename.
DataTypeAdapter.dump_filename=../data/DataTypeAdapter.dat
;######### INPUT_FILTER CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
;InputFilter.implementation=Fir_Filter
;InputFilter.implementation=Freq_Xlating_Fir_Filter
InputFilter.implementation=Pass_Through
;#dump: Dump the filtered data to a file.
InputFilter.dump=false
;#dump_filename: Log path and filename.
InputFilter.dump_filename=../data/input_filter.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#This function calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges,
;#the desired response on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples.
InputFilter.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples.
InputFilter.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter.band1_begin=0.0
InputFilter.band1_end=0.45
InputFilter.band2_begin=0.55
InputFilter.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter.ampl1_begin=1.0
InputFilter.ampl1_end=1.0
InputFilter.ampl2_begin=0.0
InputFilter.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter.band1_error=1.0
InputFilter.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter.IF is the intermediate frequency (in Hz) shifted down to zero Hz
InputFilter.sampling_frequency=2600000
InputFilter.IF=0
;######### RESAMPLER CONFIG ############
;## Resamples the input data.
Resampler.implementation=Pass_Through
Resampler.item_type = gr_complex;
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
Channels_1C.count=11
;#count: Number of available Galileo satellite channels.
Channels_1B.count=0
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
Channels.in_acquisition=1
;#signal:
;#if the option is disabled by default is assigned "1C" GPS L1 C/A
Channel1.signal=1C
Channel2.signal=1C
Channel3.signal=1C
Channel4.signal=1C
Channel5.signal=1C
Channel6.signal=1C
Channel7.signal=1C
Channel8.signal=1C
Channel9.signal=1C
Channel10.signal=1C
Channel11.signal=1C
Channel12.signal=1C
Channel13.signal=1B
Channel14.signal=1B
Channel15.signal=1B
;######### GPS ACQUISITION CONFIG ############
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
;#item_type: Type and resolution for each of the signal samples.
Acquisition_1C.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1C.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1C.sampled_ms=1
;#implementation: Acquisition algorithm selection for this channel: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
;#use_CFAR_algorithm: If enabled, acquisition estimates the input signal power to implement CFAR detection algorithms
;#notice that this affects the Acquisition threshold range!
Acquisition_1C.use_CFAR_algorithm=false;
;#threshold: Acquisition threshold
Acquisition_1C.threshold=15
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
;Acquisition_1C.pfa=0.01
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1C.doppler_max=6000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_1C.doppler_step=100
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1C.dump=false
;#filename: Log path and filename
Acquisition_1C.dump_filename=./acq_dump.dat
;######### GALILEO ACQUISITION CONFIG ############
Acquisition_1B.implementation=Galileo_E1_PCPS_Ambiguous_Acquisition
;#item_type: Type and resolution for each of the signal samples.
Acquisition_1B.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1B.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1B.sampled_ms=4
;#threshold: Acquisition threshold
;Acquisition_1B.threshold=0
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition_1B.pfa=0.0000008
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1B.doppler_max=15000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_1B.doppler_step=125
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1B.dump=false
;#filename: Log path and filename
Acquisition_1B.dump_filename=./acq_dump.dat
;######### TRACKING GPS CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
;#item_type: Type and resolution for each of the signal samples.
Tracking_1C.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_1C.if=0
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1C.pll_bw_hz=20.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1C.dll_bw_hz=1.5;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_1C.order=3;
;######### TRACKING GALILEO CONFIG ############
Tracking_1B.implementation=Galileo_E1_DLL_PLL_VEML_Tracking
;#item_type: Type and resolution for each of the signal samples.
Tracking_1B.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_1B.if=0
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_1B.dump=false
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_1B.dump_filename=../data/veml_tracking_ch_
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1B.pll_bw_hz=15.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1B.dll_bw_hz=2.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_1B.order=3;
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5] for GPS and [0.15] for Galileo
Tracking_1B.early_late_space_chips=0.15;
;#very_early_late_space_chips: only for [Galileo_E1_DLL_PLL_VEML_Tracking], correlator very early-late space [chips]. Use [0.6]
Tracking_1B.very_early_late_space_chips=0.6;
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_1C.dump=false
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_1C.dump_filename=../data/epl_tracking_ch_
;######### TELEMETRY DECODER GPS CONFIG ############
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1C.dump=false
;######### TELEMETRY DECODER GALILEO CONFIG ############
;#implementation: Use [Galileo_E1B_Telemetry_Decoder] for Galileo E1B
TelemetryDecoder_1B.implementation=Galileo_E1B_Telemetry_Decoder
;######### OBSERVABLES CONFIG ############
Observables.implementation=Hybrid_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=false
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
;######### PVT CONFIG ############
PVT.implementation=RTKLIB_PVT
PVT.positioning_mode=PPP_Static ; options: Single, Static, Kinematic, PPP_Static, PPP_Kinematic
PVT.iono_model=Broadcast ; options: OFF, Broadcast, SBAS, Iono-Free-LC, Estimate_STEC, IONEX
PVT.trop_model=Saastamoinen ; options: OFF, Saastamoinen, SBAS, Estimate_ZTD, Estimate_ZTD_Grad
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
PVT.output_rate_ms=100;
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
PVT.display_rate_ms=500;
PVT.flag_rtcm_server=false
PVT.flag_rtcm_tty_port=false
PVT.rtcm_dump_devname=/dev/pts/1
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
PVT.dump=false
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
PVT.dump_filename=./PVT