mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2024-10-29 22:26:22 +00:00
126 lines
3.3 KiB
Matlab
126 lines
3.3 KiB
Matlab
% Reads GNSS-SDR Acquisition dump .mat file using the provided
|
|
% function and plots acquisition grid of acquisition statistic of PRN sat
|
|
% Antonio Ramos, 2017. antonio.ramos(at)cttc.es
|
|
% -------------------------------------------------------------------------
|
|
%
|
|
% GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
|
|
% This file is part of GNSS-SDR.
|
|
%
|
|
% Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors)
|
|
% SPDX-License-Identifier: GPL-3.0-or-later
|
|
%
|
|
% -------------------------------------------------------------------------
|
|
%
|
|
|
|
%% Configuration
|
|
path = '/home/dmiralles/Documents/gnss-sdr/';
|
|
file = 'bds_acq';
|
|
sat = 6;
|
|
channel = 0;
|
|
execution = 4;
|
|
% Signal:
|
|
% 1 GPS L1
|
|
% 2 GPS L2M
|
|
% 3 GPS L5
|
|
% 4 Gal. E1B
|
|
% 5 Gal. E5
|
|
% 6 Glo. 1G
|
|
% 7 Glo. 2G
|
|
% 8 BDS. B1
|
|
% 9 BDS. B3
|
|
% 10 BDS. B2a
|
|
|
|
signal_type = 8;
|
|
|
|
%%% True for light grid representation
|
|
lite_view = true;
|
|
|
|
%%% If lite_view, it sets the number of samples per chip in the graphical representation
|
|
n_samples_per_chip = 3;
|
|
d_samples_per_code = 25000;
|
|
|
|
%% Load data
|
|
|
|
switch(signal_type)
|
|
case 1
|
|
n_chips = 1023;
|
|
system = 'G';
|
|
signal = '1C';
|
|
case 2
|
|
n_chips = 10230;
|
|
system = 'G';
|
|
signal = '2S';
|
|
case 3
|
|
n_chips = 10230;
|
|
system = 'G';
|
|
signal = 'L5';
|
|
case 4
|
|
n_chips = 4092;
|
|
system = 'E';
|
|
signal = '1B';
|
|
case 5
|
|
n_chips = 10230;
|
|
system = 'E';
|
|
signal = '5X';
|
|
case 6
|
|
n_chips = 511;
|
|
system = 'R';
|
|
signal = '1G';
|
|
case 7
|
|
n_chips = 511;
|
|
system = 'R';
|
|
signal = '2G';
|
|
case 8
|
|
n_chips = 2048;
|
|
system = 'C';
|
|
signal = 'B1';
|
|
case 9
|
|
n_chips = 10230;
|
|
system = 'C';
|
|
signal = 'B3';
|
|
case 10
|
|
n_chips = 10230;
|
|
system = 'C';
|
|
signal = '5C';
|
|
end
|
|
filename = [path file '_' system '_' signal '_ch_' num2str(channel) '_' num2str(execution) '_sat_' num2str(sat) '.mat'];
|
|
load(filename);
|
|
[n_fft, n_dop_bins] = size(acq_grid);
|
|
[d_max, f_max] = find(acq_grid == max(max(acq_grid)));
|
|
freq = (0 : n_dop_bins - 1) * double(doppler_step) - double(doppler_max);
|
|
delay = (0 : n_fft - 1) / n_fft * n_chips;
|
|
|
|
|
|
%% Plot data
|
|
%--- Acquisition grid (3D)
|
|
figure(1)
|
|
if(lite_view == false)
|
|
surf(freq, delay, acq_grid, 'FaceColor', 'interp', 'LineStyle', 'none')
|
|
ylim([min(delay) max(delay)])
|
|
else
|
|
delay_interp = (0 : n_samples_per_chip * n_chips - 1) / n_samples_per_chip;
|
|
grid_interp = spline(delay, acq_grid', delay_interp)';
|
|
surf(freq, delay_interp, grid_interp, 'FaceColor', 'interp', 'LineStyle', 'none')
|
|
ylim([min(delay_interp) max(delay_interp)])
|
|
end
|
|
xlabel('Doppler shift (Hz)')
|
|
xlim([min(freq) max(freq)])
|
|
ylabel('Code delay (chips)')
|
|
zlabel('Test Statistics')
|
|
|
|
%--- Acquisition grid (2D)
|
|
figure(2)
|
|
subplot(2,1,1)
|
|
plot(freq, acq_grid(d_max, :))
|
|
xlim([min(freq) max(freq)])
|
|
xlabel('Doppler shift (Hz)')
|
|
ylabel('Test statistics')
|
|
title(['Fixed code delay to ' num2str((d_max - 1) / n_fft * n_chips) ' chips'])
|
|
subplot(2,1,2)
|
|
normalization = (d_samples_per_code^4) * input_power;
|
|
plot(delay, acq_grid(:, f_max)./normalization)
|
|
xlim([min(delay) max(delay)])
|
|
xlabel('Code delay (chips)')
|
|
ylabel('Test statistics')
|
|
title(['Doppler wipe-off = ' num2str((f_max - 1) * doppler_step - doppler_max) ' Hz'])
|