gnss-sdr/src/core/monitor/serdes_gnss_synchro.h

173 lines
6.6 KiB
C++

/*!
* \file serdes_gnss_synchro.h
* \brief Serialization / Deserialization of Gnss_Synchro objects using
* Protocol Buffers
* \author Carles Fernandez-Prades, 2019. cfernandez(at)cttc.es
*
* -----------------------------------------------------------------------------
*
* GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
* This file is part of GNSS-SDR.
*
* Copyright (C) 2010-2020 (see AUTHORS file for a list of contributors)
* SPDX-License-Identifier: GPL-3.0-or-later
*
* -----------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_SERDES_GNSS_SYNCHRO_H
#define GNSS_SDR_SERDES_GNSS_SYNCHRO_H
#include "gnss_synchro.h"
#include "gnss_synchro.pb.h" // file created by Protocol Buffers at compile time
#include <array>
#include <string>
#include <utility>
#include <vector>
/*!
* \brief This class implements serialization and deserialization of
* Gnss_Synchro objects using Protocol Buffers.
*/
class Serdes_Gnss_Synchro
{
public:
Serdes_Gnss_Synchro()
{
// Verify that the version of the library that we linked against is
// compatible with the version of the headers we compiled against.
GOOGLE_PROTOBUF_VERIFY_VERSION;
}
~Serdes_Gnss_Synchro()
{
google::protobuf::ShutdownProtobufLibrary();
}
inline Serdes_Gnss_Synchro(const Serdes_Gnss_Synchro& other) noexcept //!< Copy constructor
{
this->observables = other.observables;
}
inline Serdes_Gnss_Synchro& operator=(const Serdes_Gnss_Synchro& rhs) noexcept //!< Copy assignment operator
{
this->observables = rhs.observables;
return *this;
}
inline Serdes_Gnss_Synchro(Serdes_Gnss_Synchro&& other) noexcept //!< Move constructor
{
this->observables = std::move(other.observables);
}
inline Serdes_Gnss_Synchro& operator=(Serdes_Gnss_Synchro&& other) noexcept //!< Move assignment operator
{
if (this != &other)
{
this->observables = std::move(other.observables);
}
return *this;
}
inline std::string createProtobuffer(const std::vector<Gnss_Synchro>& vgs) //!< Serialization into a string
{
observables.Clear();
std::string data;
for (const auto& gs : vgs)
{
gnss_sdr::GnssSynchro* obs = observables.add_observable();
char c = gs.System;
const std::string sys(1, c);
std::array<char, 2> cc;
cc[0] = gs.Signal[0];
cc[1] = gs.Signal[1];
const std::string sig(cc.cbegin(), cc.cend());
obs->set_system(sys);
obs->set_signal(sig);
obs->set_prn(gs.PRN);
obs->set_channel_id(gs.Channel_ID);
obs->set_acq_delay_samples(gs.Acq_delay_samples);
obs->set_acq_doppler_hz(gs.Acq_doppler_hz);
obs->set_acq_samplestamp_samples(gs.Acq_samplestamp_samples);
obs->set_acq_doppler_step(gs.Acq_doppler_step);
obs->set_flag_valid_acquisition(gs.Flag_valid_acquisition);
obs->set_fs(gs.fs);
obs->set_prompt_i(gs.Prompt_I);
obs->set_prompt_q(gs.Prompt_Q);
obs->set_cn0_db_hz(gs.CN0_dB_hz);
obs->set_carrier_doppler_hz(gs.Carrier_Doppler_hz);
obs->set_carrier_phase_rads(gs.Carrier_phase_rads);
obs->set_code_phase_samples(gs.Code_phase_samples);
obs->set_tracking_sample_counter(gs.Tracking_sample_counter);
obs->set_flag_valid_symbol_output(gs.Flag_valid_symbol_output);
obs->set_correlation_length_ms(gs.correlation_length_ms);
obs->set_flag_valid_word(gs.Flag_valid_word);
obs->set_tow_at_current_symbol_ms(gs.TOW_at_current_symbol_ms);
obs->set_pseudorange_m(gs.Pseudorange_m);
obs->set_rx_time(gs.RX_time);
obs->set_flag_valid_pseudorange(gs.Flag_valid_pseudorange);
obs->set_flag_pll_180_deg_phase_locked(gs.Flag_PLL_180_deg_phase_locked);
obs->set_interp_tow_ms(gs.interp_TOW_ms);
}
observables.SerializeToString(&data);
return data;
}
inline std::vector<Gnss_Synchro> readProtobuffer(const gnss_sdr::Observables& obs) const //!< Deserialization
{
std::vector<Gnss_Synchro> vgs;
vgs.reserve(obs.observable_size());
for (int i = 0; i < obs.observable_size(); ++i)
{
const gnss_sdr::GnssSynchro& gs_read = obs.observable(i);
Gnss_Synchro gs = Gnss_Synchro();
gs.System = gs_read.system()[0];
gs.Signal[0] = gs_read.signal()[0];
gs.Signal[1] = gs_read.signal()[1];
gs.Signal[2] = '\0';
gs.PRN = gs_read.prn();
gs.Channel_ID = gs_read.channel_id();
gs.Acq_delay_samples = gs_read.acq_delay_samples();
gs.Acq_doppler_hz = gs_read.acq_doppler_hz();
gs.Acq_samplestamp_samples = gs_read.acq_samplestamp_samples();
gs.Acq_doppler_step = gs_read.acq_doppler_step();
gs.Flag_valid_acquisition = gs_read.flag_valid_acquisition();
gs.fs = gs_read.fs();
gs.Prompt_I = gs_read.prompt_i();
gs.Prompt_Q = gs_read.prompt_q();
gs.CN0_dB_hz = gs_read.cn0_db_hz();
gs.Carrier_Doppler_hz = gs_read.carrier_doppler_hz();
gs.Carrier_phase_rads = gs_read.carrier_phase_rads();
gs.Code_phase_samples = gs_read.code_phase_samples();
gs.Tracking_sample_counter = gs_read.tracking_sample_counter();
gs.Flag_valid_symbol_output = gs_read.flag_valid_symbol_output();
gs.correlation_length_ms = gs_read.correlation_length_ms();
gs.Flag_valid_word = gs_read.flag_valid_word();
gs.TOW_at_current_symbol_ms = gs_read.tow_at_current_symbol_ms();
gs.Pseudorange_m = gs_read.pseudorange_m();
gs.RX_time = gs_read.rx_time();
gs.Flag_valid_pseudorange = gs_read.flag_valid_pseudorange();
gs.Flag_PLL_180_deg_phase_locked = gs_read.flag_pll_180_deg_phase_locked();
gs.interp_TOW_ms = gs_read.interp_tow_ms();
vgs.push_back(gs);
}
return vgs;
}
private:
gnss_sdr::Observables observables{};
};
#endif // GNSS_SDR_SERDES_GNSS_SYNCHRO_H