gnss-sdr/src/algorithms/tracking/adapters/galileo_e1_dll_pll_veml_tra...

264 lines
11 KiB
C++

/*!
* \file galileo_e1_dll_pll_veml_tracking_fpga.cc
* \brief Adapts a DLL+PLL VEML (Very Early Minus Late) tracking loop block
* to a TrackingInterface for Galileo E1 signals for the FPGA
* \author Marc Majoral, 2019. mmajoral(at)cttc.cat
*
* Code DLL + carrier PLL according to the algorithms described in:
* K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency
* Approach, Birkhauser, 2007
*
* -----------------------------------------------------------------------------
*
* GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
* This file is part of GNSS-SDR.
*
* Copyright (C) 2010-2020 (see AUTHORS file for a list of contributors)
* SPDX-License-Identifier: GPL-3.0-or-later
*
* -----------------------------------------------------------------------------
*/
#include "galileo_e1_dll_pll_veml_tracking_fpga.h"
#include "Galileo_E1.h"
#include "configuration_interface.h"
#include "display.h"
#include "dll_pll_conf_fpga.h"
#include "galileo_e1_signal_replica.h"
#include "gnss_sdr_flags.h"
#include "uio_fpga.h"
#include <volk_gnsssdr/volk_gnsssdr_alloc.h>
#include <algorithm>
#include <array>
#if USE_GLOG_AND_GFLAGS
#include <glog/logging.h>
#else
#include <absl/log/log.h>
#endif
GalileoE1DllPllVemlTrackingFpga::GalileoE1DllPllVemlTrackingFpga(
const ConfigurationInterface* configuration,
const std::string& role,
unsigned int in_streams,
unsigned int out_streams)
: role_(role),
data_codes_ptr_(nullptr),
channel_(0),
in_streams_(in_streams),
out_streams_(out_streams)
{
Dll_Pll_Conf_Fpga trk_params_fpga = Dll_Pll_Conf_Fpga();
trk_params_fpga.SetFromConfiguration(configuration, role_);
if (trk_params_fpga.extend_correlation_symbols < 1)
{
trk_params_fpga.extend_correlation_symbols = 1;
std::cout << TEXT_RED << "WARNING: Galileo E1. extend_correlation_symbols must be bigger than 0. Coherent integration has been set to 1 symbol (4 ms)" << TEXT_RESET << '\n';
}
else if (!trk_params_fpga.track_pilot and trk_params_fpga.extend_correlation_symbols > 1)
{
trk_params_fpga.extend_correlation_symbols = 1;
std::cout << TEXT_RED << "WARNING: Galileo E1. Extended coherent integration is not allowed when tracking the data component. Coherent integration has been set to 4 ms (1 symbol)" << TEXT_RESET << '\n';
}
if ((trk_params_fpga.extend_correlation_symbols > 1) and (trk_params_fpga.pll_bw_narrow_hz > trk_params_fpga.pll_bw_hz or trk_params_fpga.dll_bw_narrow_hz > trk_params_fpga.dll_bw_hz))
{
std::cout << TEXT_RED << "WARNING: Galileo E1. PLL or DLL narrow tracking bandwidth is higher than wide tracking one" << TEXT_RESET << '\n';
}
track_pilot_ = trk_params_fpga.track_pilot;
const auto vector_length = static_cast<int32_t>(std::round(trk_params_fpga.fs_in / (GALILEO_E1_CODE_CHIP_RATE_CPS / GALILEO_E1_B_CODE_LENGTH_CHIPS)));
trk_params_fpga.vector_length = vector_length;
trk_params_fpga.system = 'E';
const std::array<char, 3> sig{'1', 'B', '\0'};
std::copy_n(sig.data(), 3, trk_params_fpga.signal);
// UIO device file
device_name_ = configuration->property(role_ + ".devicename", default_device_name_Galileo_E1);
// compute the number of tracking channels that have already been instantiated. The order in which
// GNSS-SDR instantiates the tracking channels i L1, L2, L5, E1, E5a
uint32_t num_prev_assigned_ch_1C = 0;
std::string device_io_name;
if (configuration->property("Tracking_1C.devicename", default_device_name_GPS_L1) == default_device_name_GPS_L1)
{
for (uint32_t k = 0; k < configuration->property("Channels_1C.count", 0U); k++)
{
if (find_uio_dev_file_name(device_io_name, default_device_name_GPS_L1, k) == 0)
{
num_prev_assigned_ch_1C = num_prev_assigned_ch_1C + 1;
}
}
}
else
{
if (configuration->property("Tracking_1C.devicename", std::string("")) != device_name_)
{
num_prev_assigned_ch_1C = configuration->property("Channels_1C.count", 0);
}
}
uint32_t num_prev_assigned_ch_2S = configuration->property("Channels_2S.count", 0);
uint32_t num_prev_assigned_ch_L5 = configuration->property("Channels_L5.count", 0);
num_prev_assigned_ch_ = num_prev_assigned_ch_1C + num_prev_assigned_ch_2S + num_prev_assigned_ch_L5;
// ################# PRE-COMPUTE ALL THE CODES #################
uint32_t code_samples_per_chip = 2;
prn_codes_ptr_ = static_cast<int32_t*>(volk_gnsssdr_malloc(static_cast<int32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS) * code_samples_per_chip * GALILEO_E1_NUMBER_OF_CODES * sizeof(int32_t), volk_gnsssdr_get_alignment()));
volk_gnsssdr::vector<float> ca_codes_f(static_cast<uint32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS) * code_samples_per_chip);
volk_gnsssdr::vector<float> data_codes_f;
if (track_pilot_)
{
data_codes_ptr_ = static_cast<int32_t*>(volk_gnsssdr_malloc((static_cast<uint32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS)) * code_samples_per_chip * GALILEO_E1_NUMBER_OF_CODES * sizeof(int32_t), volk_gnsssdr_get_alignment()));
data_codes_f.resize(static_cast<uint32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS) * code_samples_per_chip, 0.0);
}
for (uint32_t PRN = 1; PRN <= GALILEO_E1_NUMBER_OF_CODES; PRN++)
{
std::array<char, 3> data_signal = {'1', 'B', '\0'};
if (track_pilot_)
{
std::array<char, 3> pilot_signal = {'1', 'C', '\0'};
galileo_e1_code_gen_sinboc11_float(ca_codes_f, pilot_signal, PRN);
galileo_e1_code_gen_sinboc11_float(data_codes_f, data_signal, PRN);
// The code is generated as a series of 1s and -1s. In order to store the values using only one bit, a -1 is stored as a 0 in the FPGA
for (uint32_t s = 0; s < 2 * GALILEO_E1_B_CODE_LENGTH_CHIPS; s++)
{
auto tmp_value = static_cast<int32_t>(ca_codes_f[s]);
if (tmp_value < 0)
{
tmp_value = 0;
}
tmp_value = tmp_value | LOCAL_CODE_FPGA_ENABLE_WRITE_MEMORY;
prn_codes_ptr_[static_cast<int32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS) * 2 * (PRN - 1) + s] = tmp_value;
tmp_value = static_cast<int32_t>(data_codes_f[s]);
if (tmp_value < 0)
{
tmp_value = 0;
}
tmp_value = tmp_value | LOCAL_CODE_FPGA_ENABLE_WRITE_MEMORY | LOCAL_CODE_FPGA_CORRELATOR_SELECT_COUNT;
data_codes_ptr_[static_cast<int32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS) * 2 * (PRN - 1) + s] = tmp_value;
}
}
else
{
galileo_e1_code_gen_sinboc11_float(ca_codes_f, data_signal, PRN);
// The code is generated as a series of 1s and -1s. In order to store the values using only one bit, a -1 is stored as a 0 in the FPGA
for (uint32_t s = 0; s < 2 * GALILEO_E1_B_CODE_LENGTH_CHIPS; s++)
{
auto tmp_value = static_cast<int32_t>(ca_codes_f[s]);
if (tmp_value < 0)
{
tmp_value = 0;
}
tmp_value = tmp_value | LOCAL_CODE_FPGA_ENABLE_WRITE_MEMORY;
prn_codes_ptr_[static_cast<int32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS) * 2 * (PRN - 1) + s] = tmp_value;
}
}
}
trk_params_fpga.ca_codes = prn_codes_ptr_;
trk_params_fpga.data_codes = data_codes_ptr_;
trk_params_fpga.code_length_chips = GALILEO_E1_B_CODE_LENGTH_CHIPS;
trk_params_fpga.code_samples_per_chip = code_samples_per_chip; // 2 sample per chip
trk_params_fpga.extended_correlation_in_fpga = false;
trk_params_fpga.extend_fpga_integration_periods = 1; // (number of FPGA integrations that are combined in the SW)
trk_params_fpga.fpga_integration_period = 1; // (number of symbols that are effectively integrated in the FPGA)
// ################# MAKE TRACKING GNU Radio object ###################
DLOG(INFO) << "role " << role_;
tracking_fpga_sc_sptr_ = dll_pll_veml_make_tracking_fpga(trk_params_fpga);
DLOG(INFO) << "tracking(" << tracking_fpga_sc_sptr_->unique_id() << ")";
if (in_streams_ > 1)
{
LOG(ERROR) << "This implementation only supports one input stream";
}
if (out_streams_ > 1)
{
LOG(ERROR) << "This implementation only supports one output stream";
}
}
GalileoE1DllPllVemlTrackingFpga::~GalileoE1DllPllVemlTrackingFpga()
{
volk_gnsssdr_free(prn_codes_ptr_);
if (track_pilot_)
{
volk_gnsssdr_free(data_codes_ptr_);
}
}
void GalileoE1DllPllVemlTrackingFpga::stop_tracking()
{
tracking_fpga_sc_sptr_->stop_tracking();
}
void GalileoE1DllPllVemlTrackingFpga::start_tracking()
{
tracking_fpga_sc_sptr_->start_tracking();
}
/*
* Set tracking channel unique ID
*/
void GalileoE1DllPllVemlTrackingFpga::set_channel(unsigned int channel)
{
channel_ = channel;
// UIO device file
std::string device_io_name;
// find the uio device file corresponding to the tracking multicorrelator
if (find_uio_dev_file_name(device_io_name, device_name_, channel_ - num_prev_assigned_ch_) < 0)
{
std::cout << "Cannot find the FPGA uio device file corresponding to device name " << device_name_ << std::endl;
throw std::exception();
}
tracking_fpga_sc_sptr_->set_channel(channel_, device_io_name);
}
void GalileoE1DllPllVemlTrackingFpga::set_gnss_synchro(Gnss_Synchro* p_gnss_synchro)
{
tracking_fpga_sc_sptr_->set_gnss_synchro(p_gnss_synchro);
}
void GalileoE1DllPllVemlTrackingFpga::connect(gr::top_block_sptr top_block)
{
if (top_block)
{ /* top_block is not null */
};
// nothing to connect, now the tracking uses gr_sync_decimator
}
void GalileoE1DllPllVemlTrackingFpga::disconnect(gr::top_block_sptr top_block)
{
if (top_block)
{ /* top_block is not null */
};
// nothing to disconnect, now the tracking uses gr_sync_decimator
}
gr::basic_block_sptr GalileoE1DllPllVemlTrackingFpga::get_left_block()
{
return tracking_fpga_sc_sptr_;
}
gr::basic_block_sptr GalileoE1DllPllVemlTrackingFpga::get_right_block()
{
return tracking_fpga_sc_sptr_;
}