/*!
* \file acquisition_dump_reader.cc
* \brief Helper file for unit testing
* \authors Carles Fernandez-Prades, 2017. cfernandez(at)cttc.es
* Antonio Ramos, 2018. antonio.ramos(at)cttc.es
*
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see .
*
* -------------------------------------------------------------------------
*/
#include "acquisition_dump_reader.h"
#include
#include
#include
bool acquisition_dump_reader::read_binary_acq()
{
mat_t* matfile = Mat_Open(d_dump_filename.c_str(), MAT_ACC_RDONLY);
if (matfile == NULL)
{
std::cout << "¡¡¡Unreachable Acquisition dump file!!!" << std::endl;
return false;
}
matvar_t* var_ = Mat_VarRead(matfile, "acq_grid");
if (var_ == NULL)
{
std::cout << "¡¡¡Unreachable grid variable into Acquisition dump file!!!" << std::endl;
Mat_Close(matfile);
return false;
}
if (var_->rank != 2)
{
std::cout << "Invalid Acquisition dump file: rank error" << std::endl;
Mat_VarFree(var_);
Mat_Close(matfile);
return false;
}
if ((var_->dims[0] != d_samples_per_code) or (var_->dims[1] != d_num_doppler_bins))
{
std::cout << "Invalid Acquisition dump file: dimension matrix error" << std::endl;
if (var_->dims[0] != d_samples_per_code) std::cout << "Expected " << d_samples_per_code << " samples per code. Obtained " << var_->dims[0] << std::endl;
if (var_->dims[1] != d_num_doppler_bins) std::cout << "Expected " << d_num_doppler_bins << " Doppler bins. Obtained " << var_->dims[1] << std::endl;
Mat_VarFree(var_);
Mat_Close(matfile);
return false;
}
if (var_->data_type != MAT_T_SINGLE)
{
std::cout << "Invalid Acquisition dump file: data type error" << std::endl;
Mat_VarFree(var_);
Mat_Close(matfile);
return false;
}
matvar_t* var2_ = Mat_VarRead(matfile, "doppler_max");
d_doppler_max = *static_cast(var2_->data);
Mat_VarFree(var2_);
var2_ = Mat_VarRead(matfile, "doppler_step");
d_doppler_step = *static_cast(var2_->data);
Mat_VarFree(var2_);
var2_ = Mat_VarRead(matfile, "input_power");
input_power = *static_cast(var2_->data);
Mat_VarFree(var2_);
var2_ = Mat_VarRead(matfile, "acq_doppler_hz");
acq_doppler_hz = *static_cast(var2_->data);
Mat_VarFree(var2_);
var2_ = Mat_VarRead(matfile, "acq_delay_samples");
acq_delay_samples = *static_cast(var2_->data);
Mat_VarFree(var2_);
var2_ = Mat_VarRead(matfile, "test_statistic");
test_statistic = *static_cast(var2_->data);
Mat_VarFree(var2_);
var2_ = Mat_VarRead(matfile, "threshold");
threshold = *static_cast(var2_->data);
Mat_VarFree(var2_);
var2_ = Mat_VarRead(matfile, "sample_counter");
sample_counter = *static_cast(var2_->data);
Mat_VarFree(var2_);
var2_ = Mat_VarRead(matfile, "d_positive_acq");
positive_acq = *static_cast(var2_->data);
Mat_VarFree(var2_);
var2_ = Mat_VarRead(matfile, "PRN");
PRN = *static_cast(var2_->data);
Mat_VarFree(var2_);
std::vector >::iterator it1;
std::vector::iterator it2;
float* aux = static_cast(var_->data);
int k = 0;
float normalization_factor = std::pow(d_samples_per_code, 4) * input_power;
for (it1 = mag.begin(); it1 != mag.end(); it1++)
{
for (it2 = it1->begin(); it2 != it1->end(); it2++)
{
*it2 = static_cast(aux[k]) / normalization_factor;
k++;
}
}
Mat_VarFree(var_);
Mat_Close(matfile);
return true;
}
acquisition_dump_reader::acquisition_dump_reader(const std::string& basename,
int channel,
int execution)
{
unsigned int sat_ = 0;
unsigned int doppler_max_ = 0;
unsigned int doppler_step_ = 0;
unsigned int samples_per_code_ = 0;
mat_t* matfile = Mat_Open(d_dump_filename.c_str(), MAT_ACC_RDONLY);
if (matfile != NULL)
{
matvar_t* var_ = Mat_VarRead(matfile, "doppler_max");
doppler_max_ = *static_cast(var_->data);
Mat_VarFree(var_);
var_ = Mat_VarRead(matfile, "doppler_step");
doppler_step_ = *static_cast(var_->data);
Mat_VarFree(var_);
var_ = Mat_VarRead(matfile, "PRN");
sat_ = *static_cast(var_->data);
Mat_VarFree(var_);
var_ = Mat_VarRead(matfile, "grid");
samples_per_code_ = var_->dims[0];
Mat_VarFree(var_);
Mat_Close(matfile);
}
else
{
std::cout << "¡¡¡Unreachable Acquisition dump file!!!" << std::endl;
}
acquisition_dump_reader(basename,
sat_,
doppler_max_,
doppler_step_,
samples_per_code_,
channel,
execution);
}
acquisition_dump_reader::acquisition_dump_reader(const std::string& basename,
unsigned int sat,
unsigned int doppler_max,
unsigned int doppler_step,
unsigned int samples_per_code,
int channel,
int execution)
{
d_basename = basename;
d_sat = sat;
d_doppler_max = doppler_max;
d_doppler_step = doppler_step;
d_samples_per_code = samples_per_code;
acq_doppler_hz = 0.0;
acq_delay_samples = 0.0;
test_statistic = 0.0;
input_power = 0.0;
threshold = 0.0;
positive_acq = 0;
sample_counter = 0;
PRN = 0;
d_num_doppler_bins = static_cast(ceil(static_cast(static_cast(d_doppler_max) - static_cast(-d_doppler_max)) / static_cast(d_doppler_step)));
std::vector > mag_aux(d_num_doppler_bins, std::vector(d_samples_per_code));
mag = mag_aux;
d_dump_filename = d_basename + "_ch_" + std::to_string(channel) + "_" + std::to_string(execution) + "_sat_" + std::to_string(d_sat) + ".mat";
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
{
doppler.push_back(-static_cast(d_doppler_max) + d_doppler_step * doppler_index);
}
for (unsigned int k = 0; k < d_samples_per_code; k++)
{
samples.push_back(k);
}
}
acquisition_dump_reader::~acquisition_dump_reader()
{
}