% /*! % * \file plot_acq_grid_gsoc_e5.m % * \brief Read GNSS-SDR Acquisition dump binary file using the provided % function and plot acquisition grid of acquisition statistic of PRN sat. % CAF input must be 0 or 1 depending if the user desires to read the file % that resolves doppler ambiguity or not. % % This function analyzes a experiment performed by Marc Sales in the framework % of the Google Summer of Code (GSoC) 2014, with the collaboration of Luis Esteve, Javier Arribas % and Carles Fernández, related to the extension of GNSS-SDR to Galileo. % % * \author Marc Sales marcsales92(at)gmail.com, Luis Esteve, 2014. luis(at)epsilon-formacion.com % * ------------------------------------------------------------------------- % * % * Copyright (C) 2010-2014 (see AUTHORS file for a list of contributors) % * % * GNSS-SDR is a software defined Global Navigation % * Satellite Systems receiver % * % * This file is part of GNSS-SDR. % * % * GNSS-SDR is free software: you can redistribute it and/or modify % * it under the terms of the GNU General Public License as published by % * the Free Software Foundation, either version 3 of the License, or % * at your option) any later version. % * % * GNSS-SDR is distributed in the hope that it will be useful, % * but WITHOUT ANY WARRANTY; without even the implied warranty of % * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % * GNU General Public License for more details. % * % * You should have received a copy of the GNU General Public License % * along with GNSS-SDR. If not, see . % * % * ------------------------------------------------------------------------- % */ function plot_acq_grid_gsoc_e5(sat,CAF) path='/home/marc/git/gnss-sdr/data/'; file=[path 'test_statistics_E5a_sat_' num2str(sat) '_doppler_0.dat']; sampling_freq_Hz=32E6 %Doppler_max_Hz = 14875 %Doppler_min_Hz = -15000 %Doppler_step_Hz = 125 Doppler_max_Hz = 10000 Doppler_min_Hz = -10000 Doppler_step_Hz = 250 % read files %x=read_complex_binary (file); %x=load_complex_data(file); % complex %l_y=length(x); myFile = java.io.File(file); flen = length(myFile); l_y=flen/4;% float Doppler_axes=Doppler_min_Hz:Doppler_step_Hz:Doppler_max_Hz; l_x=length(Doppler_axes); acq_grid = zeros(l_x,l_y); index=0; for k=Doppler_min_Hz:Doppler_step_Hz:Doppler_max_Hz index=index+1; filename=[path 'test_statistics_E5a_sat_' num2str(sat) '_doppler_' num2str(k) '.dat']; fid=fopen(filename,'r'); xx=fread(fid,'float');%floats from squared correlation %xx=load_complex_data (filename); %complex acq_grid(index,:)=abs(xx); end [fila,col]=find(acq_grid==max(max(acq_grid))); if (CAF > 0) filename=[path 'test_statistics_E5a_sat_' num2str(sat) '_CAF.dat']; fid=fopen(filename,'r'); xx=fread(fid,'float');%floats from squared correlation acq_grid(:,col(1))=abs(xx); Doppler_error_Hz = Doppler_axes(xx==max(xx)) maximum_correlation_peak = max(xx) else Doppler_error_Hz = Doppler_axes(fila) maximum_correlation_peak = max(max(acq_grid)) end delay_error_sps = col -1 noise_grid=acq_grid; delay_span=floor(3*sampling_freq_Hz/(1.023e7)); Doppler_span=floor(500/Doppler_step_Hz); noise_grid(fila-Doppler_span:fila+Doppler_span,col-delay_span:col+delay_span)=0; n=numel(noise_grid)-(2*delay_span+1)*(2*Doppler_span+1); noise_floor= sum(sum(noise_grid))/n Gain_dbs = 10*log10(maximum_correlation_peak/noise_floor) %% Plot 3D FULL RESOLUTION [X,Y] = meshgrid(Doppler_axes,1:1:l_y); figure; surf(X,Y,acq_grid'); xlabel('Doppler(Hz)');ylabel('Code Delay(samples)');title(['GLRT statistic of Galileo Parallel Code Phase Search Acquisition. PRN ' num2str(sat)]); end function x=load_complex_data(file) fid = fopen(file,'r'); %fid = fopen('signal_source.dat','r'); myFile = java.io.File(file); flen = length(myFile); num_samples=flen/8; % 8 bytes (2 single floats) per complex sample for k=1:num_samples a(1:2) = fread(fid, 2, 'float'); x(k) = a(1) + a(2)*1i; k=k+1; end end