/*!
* \file galileo_e5_signal_processing.cc
* \brief This library implements various functions for Galileo E5 signals such
* as replica code generation
* \author Marc Sales, 2014. marcsales92(at)gmail.com
*
* Detailed description of the file here if needed.
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see .
*
* -------------------------------------------------------------------------
*/
#include "galileo_e5_signal_processing.h"
#include "Galileo_E5a.h"
#include "gnss_signal_processing.h"
#include
void galileo_e5_a_code_gen_complex_primary(std::complex* _dest, int32_t _prn, char _Signal[3])
{
uint32_t prn = _prn - 1;
uint32_t index = 0;
int32_t a[4];
if ((_prn < 1) || (_prn > 50))
{
return;
}
if (_Signal[0] == '5' && _Signal[1] == 'Q')
{
for (size_t i = 0; i < Galileo_E5a_Q_PRIMARY_CODE[prn].length() - 1; i++)
{
hex_to_binary_converter(a, Galileo_E5a_Q_PRIMARY_CODE[prn].at(i));
_dest[index] = std::complex(0.0, float(a[0]));
_dest[index + 1] = std::complex(0.0, float(a[1]));
_dest[index + 2] = std::complex(0.0, float(a[2]));
_dest[index + 3] = std::complex(0.0, float(a[3]));
index = index + 4;
}
// last 2 bits are filled up zeros
hex_to_binary_converter(a, Galileo_E5a_Q_PRIMARY_CODE[prn].at(Galileo_E5a_Q_PRIMARY_CODE[prn].length() - 1));
_dest[index] = std::complex(float(0.0), a[0]);
_dest[index + 1] = std::complex(float(0.0), a[1]);
}
else if (_Signal[0] == '5' && _Signal[1] == 'I')
{
for (size_t i = 0; i < Galileo_E5a_I_PRIMARY_CODE[prn].length() - 1; i++)
{
hex_to_binary_converter(a, Galileo_E5a_I_PRIMARY_CODE[prn].at(i));
_dest[index] = std::complex(float(a[0]), 0.0);
_dest[index + 1] = std::complex(float(a[1]), 0.0);
_dest[index + 2] = std::complex(float(a[2]), 0.0);
_dest[index + 3] = std::complex(float(a[3]), 0.0);
index = index + 4;
}
// last 2 bits are filled up zeros
hex_to_binary_converter(a, Galileo_E5a_I_PRIMARY_CODE[prn].at(Galileo_E5a_I_PRIMARY_CODE[prn].length() - 1));
_dest[index] = std::complex(float(a[0]), 0.0);
_dest[index + 1] = std::complex(float(a[1]), 0.0);
}
else if (_Signal[0] == '5' && _Signal[1] == 'X')
{
int32_t b[4];
for (size_t i = 0; i < Galileo_E5a_I_PRIMARY_CODE[prn].length() - 1; i++)
{
hex_to_binary_converter(a, Galileo_E5a_I_PRIMARY_CODE[prn].at(i));
hex_to_binary_converter(b, Galileo_E5a_Q_PRIMARY_CODE[prn].at(i));
_dest[index] = std::complex(float(a[0]), float(b[0]));
_dest[index + 1] = std::complex(float(a[1]), float(b[1]));
_dest[index + 2] = std::complex(float(a[2]), float(b[2]));
_dest[index + 3] = std::complex(float(a[3]), float(b[3]));
index = index + 4;
}
// last 2 bits are filled up zeros
hex_to_binary_converter(a, Galileo_E5a_I_PRIMARY_CODE[prn].at(Galileo_E5a_I_PRIMARY_CODE[prn].length() - 1));
hex_to_binary_converter(b, Galileo_E5a_Q_PRIMARY_CODE[prn].at(Galileo_E5a_Q_PRIMARY_CODE[prn].length() - 1));
_dest[index] = std::complex(float(a[0]), float(b[0]));
_dest[index + 1] = std::complex(float(a[1]), float(b[1]));
}
}
void galileo_e5_a_code_gen_complex_sampled(std::complex* _dest, char _Signal[3],
uint32_t _prn, int32_t _fs, uint32_t _chip_shift)
{
uint32_t _samplesPerCode;
uint32_t delay;
const uint32_t _codeLength = Galileo_E5a_CODE_LENGTH_CHIPS;
const int32_t _codeFreqBasis = Galileo_E5a_CODE_CHIP_RATE_HZ;
std::complex* _code = new std::complex[_codeLength]();
galileo_e5_a_code_gen_complex_primary(_code, _prn, _Signal);
_samplesPerCode = static_cast(static_cast(_fs) / (static_cast(_codeFreqBasis) / static_cast(_codeLength)));
delay = ((_codeLength - _chip_shift) % _codeLength) * _samplesPerCode / _codeLength;
if (_fs != _codeFreqBasis)
{
std::complex* _resampled_signal;
if (posix_memalign((void**)&_resampled_signal, 16, _samplesPerCode * sizeof(gr_complex)) == 0)
{
};
resampler(_code, _resampled_signal, _codeFreqBasis, _fs, _codeLength, _samplesPerCode); // resamples code to fs
delete[] _code;
_code = _resampled_signal;
}
for (uint32_t i = 0; i < _samplesPerCode; i++)
{
_dest[(i + delay) % _samplesPerCode] = _code[i];
}
if (_fs != _codeFreqBasis)
{
free(_code);
}
else
{
delete[] _code;
}
}